【題目】廊橋是我國(guó)古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為,為保護(hù)廊橋的安全,在該拋物線上距水面高為8米的點(diǎn)、處要安裝兩盞警示燈,則這兩盞燈的水平距離是____米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程①,②,③,④(為實(shí)數(shù)),⑤,⑥其中一定是一元二次方程的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:
甲公司為“基本工資+攬件提成”,其中基本工資為70元/日,每攬收一件提成2元;
乙公司無(wú)基本工資,僅以攬件提成計(jì)算工資.若當(dāng)日攬件數(shù)不超過(guò)40,每件提成4元;若當(dāng)日攪件數(shù)超過(guò)40,超過(guò)部分每件多提成2元.
如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計(jì)圖:
(1)現(xiàn)從今年四月份的30天中隨機(jī)抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過(guò)40(不含40)的概率;
(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的
攬件數(shù),解決以下問題:
①估計(jì)甲公司各攬件員的日平均件數(shù);
②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)知識(shí)幫他選擇,井說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,CD為AB邊上的高,AD=8,CD=4,BD=3.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿射線AB運(yùn)動(dòng),速度為1個(gè)單位/秒,運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),△PDC≌△BDC;
(2)當(dāng)t為何值時(shí),△PBC是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)C在線段AB上,(點(diǎn)C不與A、B重合),分別以AC、BC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點(diǎn)P
(1)觀察猜想:①線段AE與BD的數(shù)量關(guān)系為_________;②∠APC的度數(shù)為_______________
(2)數(shù)學(xué)思考:如圖2,當(dāng)點(diǎn)C在線段AB外時(shí),(1)中的結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明
(3)拓展應(yīng)用:如圖3,分別以AC、BC為邊在AB同側(cè)作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,連接AE=BD交于點(diǎn)P,則線段AE與BD的關(guān)系為________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)老板對(duì)一種新上市商品的銷售情況進(jìn)行記錄,已知這種商品進(jìn)價(jià)為每件40元,經(jīng)過(guò)記錄分析發(fā)現(xiàn),當(dāng)銷售單價(jià)在40元至90元之間(含40元和90元)時(shí),每月的銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似地看作一次函數(shù),其圖象如圖所示.
(1)求y與x的函數(shù)關(guān)系式.
(2)設(shè)商場(chǎng)老板每月獲得的利潤(rùn)為P(元),求P與x之間的函數(shù)關(guān)系式;
(3)如果想要每月獲得2400元的利潤(rùn),那么銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,CD、CM分別是斜邊上的高和中線,那么下列結(jié)論中錯(cuò)誤的是( )
A.CM=ACB.∠ACM=∠DCBC.AD=DMD.DB=4AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于點(diǎn)D,DE垂直平分線段AB.
(1)求∠A;
(2)若DE=2cm,BD=4cm,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,點(diǎn)E是BC邊上一點(diǎn),∠DEF=45°且角的兩邊分別與邊AB,射線CA交于點(diǎn)P,Q.
(1)如圖2,若點(diǎn)E為BC中點(diǎn),將∠DEF繞著點(diǎn)E逆時(shí)針旋轉(zhuǎn),DE與邊AB交于點(diǎn)P,EF與CA的延長(zhǎng)線交于點(diǎn)Q.設(shè)BP為x,CQ為y,試求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)如圖3,點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(dòng)(不與B,C重合),且DE始終經(jīng)過(guò)點(diǎn)A,EF與邊AC交于Q點(diǎn).探究:在∠DEF運(yùn)動(dòng)過(guò)程中,△AEQ能否構(gòu)成等腰三角形,若能,求出BE的長(zhǎng);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com