【題目】如圖, AB∥CD, AC∥BD, ADBC交于O, AE⊥BCE, DF⊥BCF, 那么圖中全等的三角形有 ( )

A.5對(duì)B.6對(duì)C.7對(duì)D.8對(duì)

【答案】C

【解析】

解:∵ABCDACBD,
∴∠ABC=DCB,∠ACB=DBC
BC=CB,
∴△CAB≌△CDB
AB=CD,AC=BD
ABCDACBD,
∴∠BAO=CDO,∠OBA=OCD,∠OBD=OCA,∠OAC=ODB
∴△AOB≌△CODAOC≌△BOD
OA=OD,OC=OB
AEBCDFBC,∠AOE=DOF,
∴△AOE≌△DOF
OE=OF
CE=BF
AE=DF,AC=BD,
∴△AEC≌△BFD
AE=DF,AB=CD,BE=CF
∴△AEB≌△DFC
還有ACD≌△DBA
故全等三角形有7對(duì),選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】滿足下列條件的,不是直角三角形的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)學(xué)雷鋒、樹(shù)新風(fēng)、做文明中學(xué)生號(hào)召,某校開(kāi)展了志愿者服務(wù)活動(dòng),活動(dòng)項(xiàng)目有戒毒宣傳”、“文明交通崗”、“關(guān)愛(ài)老人”、“義務(wù)植樹(shù)”、“社區(qū)服務(wù)等五項(xiàng),活動(dòng)期間,隨機(jī)抽取了部分學(xué)生對(duì)志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動(dòng),最少的參與了1項(xiàng),最多的參與了5項(xiàng),根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

(1)被隨機(jī)抽取的學(xué)生共有多少名?

(2)在扇形統(tǒng)計(jì)圖中,求活動(dòng)數(shù)為3項(xiàng)的學(xué)生所對(duì)應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計(jì)圖;

(3)該校共有學(xué)生2000人,估計(jì)其中參與了4項(xiàng)或5項(xiàng)活動(dòng)的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是O的直徑,C是O上一點(diǎn),D在AB的延長(zhǎng)線上,且BCD=A.

(1)求證:CD是O的切線;

(2)若O的半徑為3,CD=4,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,BM=CM,MDAC,MGAB,DEAB,GFAC.求證:四邊形HGMD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,兩邊及其中一邊的對(duì)角分別對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.那么在什么情況下,它們會(huì)全等?

1)閱讀與證明:

對(duì)于這兩個(gè)三角形均為直角三角形,顯然它們?nèi)龋?/span>

對(duì)于這兩個(gè)三角形均為鈍角三角形,可證它們?nèi)龋ㄗC明略).

對(duì)于這兩個(gè)三角形均為銳角三角形,它們也全等,可證明如下:

如圖所示,、均為銳角三角形,,

求證:

證明:分別過(guò)點(diǎn)B,于點(diǎn)D于點(diǎn)

,

____________________________________________________________

(請(qǐng)你將上述證明過(guò)程補(bǔ)充完整)

2)歸納與敘述:由(1)可得到一個(gè)正確結(jié)論,請(qǐng)你寫(xiě)出這個(gè)結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中,厘米,厘米,點(diǎn)的中點(diǎn).

1)如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).

①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,是否全等,請(qǐng)說(shuō)明理由;

②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等, 是否可能全等?若能,求出全等時(shí)點(diǎn)Q的運(yùn)動(dòng)速度和時(shí)間;若不能,請(qǐng)說(shuō)明理由.

2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在中,,,對(duì)角線,相交于點(diǎn).點(diǎn)是線段上一動(dòng)點(diǎn)(不與重合),連接,以為邊在的右側(cè)作,且.

1)如圖①,若點(diǎn)落在線段上,則線段與線段的數(shù)量關(guān)系是______;

2)如圖②,若點(diǎn)不在線段上,(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某公司員工住在三個(gè)住宅區(qū),已知區(qū)有2人,區(qū)有7人,區(qū)有12人,三個(gè)住宅區(qū)在同一條直線上,且,的中點(diǎn).為方便員工,公司計(jì)劃開(kāi)設(shè)通勤車(chē)免費(fèi)接送員工上下班,但因?yàn)橥\?chē)緊張,在四處只能設(shè)一個(gè)通勤車(chē)?奎c(diǎn),為使所有員工步行到停靠點(diǎn)的路程之和最小,那么?空緫(yīng)設(shè)在(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案