【題目】如圖,已知四邊形ABCD是平行四邊形,下列結論中不正確的是(
A.當AB=BC時,它是菱形
B.當AC⊥BD時,它是菱形
C.當∠ABC=90°時,它是矩形
D.當AC=BD時,它是正方形

【答案】D
【解析】解:A、根據(jù)鄰邊相等的平行四邊形是菱形可知:四邊形ABCD是平行四邊形,當AB=BC時,它是菱形,故A選項正確; B、∵四邊形ABCD是平行四邊形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2 , AD2=DO2+AO2 , ∴AB=AD,∴四邊形ABCD是菱形,故B選項正確;
C、有一個角是直角的平行四邊形是矩形,故C選項正確;
D、根據(jù)對角線相等的平行四邊形是矩形可知當AC=BD時,它是矩形,不是正方形,故D選項錯誤;
綜上所述,符合題意是D選項;
故選:D.
根據(jù)鄰邊相等的平行四邊形是菱形;根據(jù)所給條件可以證出鄰邊相等;根據(jù)有一個角是直角的平行四邊形是矩形;根據(jù)對角線相等的平行四邊形是矩形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,且OA=2,OC=3

(1)求拋物線的解析式;

(2)作RtOBC的高OD,延長OD與拋物線在第一象限內交于點E,求點E的坐標;

(3)在x軸上方的拋物線上,是否存在一點P,使四邊形OBEP是平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由;

在拋物線的對稱軸上,是否存在上點Q,使得BEQ的周長最小?若存在,求出點Q的坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形ABCD中,對角線AC、BD相交于點O,BD=2AD,E、F、G分別是OC、OD,AB的中點.下列結論:①EG=EF; ②△EFG≌△GBE; ③FB平分∠EFG;④EA平分∠GEF;⑤四邊形BEFG是菱形.
其中正確的是.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個角的度數(shù)為31°42′,那么它的補角的度數(shù)為°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個運算程序的示意圖,若開始輸入的x值為81,我們看到第一次輸出的結果為27,第二次輸出的結果為9,…,第2017次輸出的結果為( )

A.1
B.3
C.9
D.27

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程(x+8)(x﹣1)=﹣5化成一般形式是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為直線AB上一點,過點O作射線OC , 使∠BOC=135°,將一個含45°角的直角三角尺的一個頂點放在點O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.

(1)將圖1中的三角尺繞著點O逆時針旋轉90°,如圖1所示,此時∠BOM=;在圖1中,OM是否平分∠CON?請說明理由;
(2)緊接著將圖2中的三角板繞點O逆時針繼續(xù)旋轉到圖3的位置所示,使得ON在∠AOC的內部,請?zhí)骄浚骸?/span>AOM與∠CON之間的數(shù)量關系,并說明理由;
(3)將圖1中的三角板繞點O按每秒5°的速度沿逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為(直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x=﹣1是方程2x+a=0的解,則a=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標為(-1,0),點C(0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.

(1)求拋物線的解析式

(2)求出對稱軸和頂點坐標.

查看答案和解析>>

同步練習冊答案