精英家教網 > 初中數學 > 題目詳情
(2010•遵義)如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為Q(2,-1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.
(1)求該拋物線的函數關系式;
(2)當△ADP是直角三角形時,求點P的坐標;
(3)在題(2)的結論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.

【答案】分析:(1)已知了拋物線的頂點坐標,可將拋物線的解析式設為頂點式,然后將函數圖象經過的C點坐標代入上式中,即可求出拋物線的解析式;
(2)由于PD∥y軸,所以∠ADP≠90°,若△ADP是直角三角形,可考慮兩種情況:
①以點P為直角頂點,此時AP⊥DP,此時P點位于x軸上(即與B點重合),由此可求出P點的坐標;
②以點A為直角頂點,易知OA=OC,則∠OAC=45°,所以OA平分∠CAP,那么此時D、P關于x軸對稱,可求出直線AC的解析式,然后設D、P的橫坐標,根據拋物線和直線AC的解析式表示出D、P的縱坐標,由于兩點關于x軸對稱,則縱坐標互為相反數,可據此求出P點的坐標;
(3)很顯然當P、B重合時,不能構成以A、P、E、F為頂點的四邊形,因為點P、F都在拋物線上,且點P為拋物線的頂點,所以PF與x軸不平行,所以只有(2)②的一種情況符合題意,由②知此時P、Q重合;假設存在符合條件的平行四邊形,那么根據平行四邊形的性質知:P、F的縱坐標互為相反數,可據此求出F點的縱坐標,代入拋物線的解析式中即可求出F點的坐標.
解答:解:(1)∵拋物線的頂點為Q(2,-1),
∴設拋物線的解析式為y=a(x-2)2-1,
將C(0,3)代入上式,得:
3=a(0-2)2-1,a=1;
∴y=(x-2)2-1,即y=x2-4x+3;

(2)分兩種情況:
①當點P1為直角頂點時,點P1與點B重合;
令y=0,得x2-4x+3=0,解得x1=1,x2=3;
∵點A在點B的右邊,
∴B(1,0),A(3,0);
∴P1(1,0);
②當點A為△AP2D2的直角頂點時;
∵OA=OC,∠AOC=90°,
∴∠OAD2=45°;
當∠D2AP2=90°時,∠OAP2=45°,
∴AO平分∠D2AP2
又∵P2D2∥y軸,
∴P2D2⊥AO,
∴P2、D2關于x軸對稱;
設直線AC的函數關系式為y=kx+b(k≠0).
將A(3,0),C(0,3)代入上式得:
,
解得
∴y=-x+3;
設D2(x,-x+3),P2(x,x2-4x+3),
則有:(-x+3)+(x2-4x+3)=0,
即x2-5x+6=0;
解得x1=2,x2=3(舍去);
∴當x=2時,y=x2-4x+3=22-4×2+3=-1;
∴P2的坐標為P2(2,-1)(即為拋物線頂點).
∴P點坐標為P1(1,0),P2(2,-1);

(3)由(2)知,當P點的坐標為P1(1,0)時,不能構成平行四邊形;
當點P的坐標為P2(2,-1)(即頂點Q)時,
平移直線AP交x軸于點E,交拋物線于F;
∵P(2,-1),
∴可設F(x,1);
∴x2-4x+3=1,
解得x1=2-,x2=2+;
∴符合條件的F點有兩個,
即F1(2-,1),F2(2+,1).
點評:此題主要考查了二次函數解析式的確定、直角三角形的判定、平行四邊形的判定和性質等重要知識點,同時還考查了分類討論的數學思想,能力要求較高,難度較大.
練習冊系列答案
相關習題

科目:初中數學 來源:2011年山東省泰安市中考數學樣卷(解析版) 題型:解答題

(2010•遵義)如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為Q(2,-1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.
(1)求該拋物線的函數關系式;
(2)當△ADP是直角三角形時,求點P的坐標;
(3)在題(2)的結論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2010•遵義)如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為Q(2,-1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.
(1)求該拋物線的函數關系式;
(2)當△ADP是直角三角形時,求點P的坐標;
(3)在題(2)的結論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《反比例函數》(04)(解析版) 題型:填空題

(2010•遵義)如圖,在第一象限內,點P(2,3),M(a,2)是雙曲線y=(k≠0)上的兩點,PA⊥x軸于點A,MB⊥x軸于點B,PA與OM交于點C,則△OAC的面積為   

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《一次函數》(03)(解析版) 題型:填空題

(2010•遵義)如圖,在第一象限內,點P(2,3),M(a,2)是雙曲線y=(k≠0)上的兩點,PA⊥x軸于點A,MB⊥x軸于點B,PA與OM交于點C,則△OAC的面積為   

查看答案和解析>>

科目:初中數學 來源:2010年貴州省遵義市中考數學試卷(解析版) 題型:填空題

(2010•遵義)如圖,在第一象限內,點P(2,3),M(a,2)是雙曲線y=(k≠0)上的兩點,PA⊥x軸于點A,MB⊥x軸于點B,PA與OM交于點C,則△OAC的面積為   

查看答案和解析>>

同步練習冊答案