【題目】如圖,平行四邊形ABCD,點FBC上的一點,連接AF,∠FAD60°,AE平分∠FAD,交CD于點E,且點ECD的中點,連接EF,已知AD5,CF3,則EF_____

【答案】4

【解析】

延長AE、BC交于點G,判定△ADE≌△GCE,即可得CG=AD=5,AE=GE,再根據(jù)三線合一可得到FEAG,進而得出RtAEF中,EFAF4

解:如圖所示;延長AEBC交于點G,

∵點ECD的中點,

DECE,

∵平行四邊形ABCD中,ADBC

∴∠D=∠ECG,

又∠AED=∠GED,

∴△ADE≌△GCE

CGAD5,AEGE

又∵AE平分∠FAD,ADBC

∴∠FAE=∠DAE=∠GDAF30°,

AFGF358

又∵EAG的中點,

FEAG

RtAEF中,EFAF4

故答案為:4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點A,點B,點Cy軸上的一個動點,當∠BCA=30°時,點C的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+b與雙曲線y=(k是常數(shù),k0)在第一象限內(nèi)交于點A(1,2),且與x軸、y軸分別交于B,C兩點.點Px軸.

(1)求直線和雙曲線的解析式;

(2)若△BCP的面積等于2,求P點的坐標;

(3)求PA+PC的最短距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售如下:

每人銷售件數(shù)

1800

510

250

210

150

120

人數(shù)

1

1

3

5

3

2

1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù).

2)假設銷售部負責人把每位營銷員的月銷售額定為320件,你認為是否合理?為什么?如不合理,請你制定一個合理的銷售定額,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是二次函數(shù) yax2bxca0)的圖象的一部分, 給出下列命題 :①a+b+c=0;②b2a;③ax2+bx+c=0的兩根分別為-31;④a2b+c0.其中正確的命題是__________.(只要求填寫正確命題的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點P從點A開始沿邊AB向終點B以每秒2個單位長度的速度移動,動點Q從點B開始沿邊BC以每秒4個單位長度的速度向終點C移動,如果點P、Q分別從點A、B同時出發(fā),那么△PBQ的面積S隨出發(fā)時間t(s)如何變化?寫出函數(shù)關系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某中學準備在校園里利用院墻的一段再圍三面籬笆,形成一個矩形花園ABC(院墻 MN 長 25 米).現(xiàn)有 50米長的籬笆,請你設計一種圍法(籬笆必須用完),使矩形花園的面積為300米 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形的邊長.某一時刻,動點點出發(fā)沿方向以的速度向點勻速運動;同時,動點點出發(fā)沿方向以的速度向點勻速運動,問:

(1)經(jīng)過多少時間,的面積等于矩形面積的

(2)是否存在時刻t,使以A,M,N為頂點的三角形與相似?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點O是等邊ABC內(nèi)的任一點,連接OA,OB,OC.

(1)如圖1,已知AOB=150°,BOC=120°,將BOC繞點C按順時針方向旋轉60°得ADC.

DAO的度數(shù)是

②用等式表示線段OA,OB,OC之間的數(shù)量關系,并證明;

(2)設AOB=α,BOC=β.

①當α,β滿足什么關系時,OA+OB+OC有最小值?請在圖2中畫出符合條件的圖形,并說明理由;

②若等邊ABC的邊長為1,直接寫出OA+OB+OC的最小值.

查看答案和解析>>

同步練習冊答案