【題目】為了測量圖①②中的樹高,在同一時刻某人進行了如下操作:
圖①:測得竹竿CD的長為0.8米,其影長CE為1米,樹影AE長為2.4米.
圖②:測得落在地面上的樹的影長為2.8米,落在墻上的樹影高1.2米.
請問圖①和圖②中的樹高各是多少?
【答案】圖①中的樹高為1.92米, 圖②中的樹高為3.44米
【解析】(1)根據(jù)△CDE∽△ABE,,代入各邊長,即可得出答案;
(2)先求出墻上的影高落在地面上時的長度,再設(shè)樹高為h,根據(jù)同一時刻物高與影長成正比列出關(guān)系式求出h的值即可.
(1)∵△CDE∽△ABE,
∴,
又竹竿CD的長為0.8米,其影CE長1米,樹影AE長2.4米,
∴AB=1.92米.即圖1的樹高為1.92米.
(2)設(shè)墻上的影高落在地面上時的長度為x,樹高為h,
∵竹竿CD的長為0.8米,其影CE長1米,
∴,解得x=1.5(m),
∴樹的影長為:1.5+2.8=4.3(m),
∴,解得h=3.44(m).
故答案為:3.44m.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,線段AB、CD相交于點O,連結(jié)AD、CB,我們把這個圖形稱為“8字型”根據(jù)三角形內(nèi)角和容易得到:∠A+∠D=∠C+∠B.
(1)用“8字型”
如圖2,∠A+∠B+∠C+∠D+∠E+∠F=___________;
(2)造“8字型”
如圖3,∠A+∠B+∠C+∠D+∠E+∠F+∠G=_____________;
(3)發(fā)現(xiàn)“8字型”
如圖4,BE、CD相交于點A,CF為∠BCD的平分
線,EF為∠BED的平分線.
①圖中共有________個“8字型”;
②若∠B:∠D:∠F=4:6:x,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在面積都相等的所有矩形中,當(dāng)其中一個矩形的一邊長為1時,它的另一邊長為3.
(1)設(shè)矩形的相鄰兩邊長分別為x,y.
①求y關(guān)于x的函數(shù)表達式;
②當(dāng)y≥3時,求x的取值范圍;
(2)圓圓說其中有一個矩形的周長為6,方方說有一個矩形的周長為10,你認為圓圓和方方的說法對嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= (m為常數(shù))的圖像在第一、三象限.
(1)求m的取值范圍.
(2)如圖,若該反比例函數(shù)的圖像經(jīng)過ABOD的頂點D,點A,B的坐標分別為(0,3),(-2,0).
①求出該反比例函數(shù)的表達式;
②設(shè)P是該反比例函數(shù)圖像上的一點,若OD=OP,則點P的坐標為________________;若以D,O,P為頂點的三角形是等腰三角形,則滿足條件的點P有________個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于點D,交AC于點E.
(1)求∠BAD的度數(shù);
(2)若AB=10,BC=12,求△ABD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來我市大力發(fā)展綠色交通,構(gòu)建公共、綠色交通體系,將“共享單車”陸續(xù)放置在人口流量較大的地方,琪琪同學(xué)隨機調(diào)查了若干市民租用“共享單車”的騎車時間(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(),根據(jù)圖中信息,解答下列問題:
(1)這項被調(diào)查的總?cè)藬?shù)是 人,表示組的扇形統(tǒng)計圖的圓心角的度數(shù)為 .
(2)若某小區(qū)共有人,根據(jù)調(diào)查結(jié)果,估計租用“共享單車”的騎車時間為的大約有多少人?
(3)如果琪琪同學(xué)想從組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用“共享單車”的騎車時間情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由一些棱長為單位的相同的小正方體組合成的簡單幾何體.
(1)圖中有_________塊小正方體;
(2)請在相應(yīng)方格紙中分別畫出幾何體的左視圖和俯視圖并用陰影表示出來;
(3)如果在其表面涂漆(幾何體放在地上,底面無法涂上漆),則要涂_________平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=,點P是AC邊上的一動點(點P不與端點A、C重合),過點A作AE⊥BP于D,交BC的延長線于點E.
(1)求證:△ACE≌△BCP;
(2)在點P的移動過程中,若AD=DC,試求CP的長;
(3)試探索:在點P的移動過程中,∠ADC的大小是否保持不變?若保持不變,請求出∠ADC的大。蝗粲凶兓,請說明變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,點M的坐標為(x1,y1),點的坐標為(x2,y2),且x1≠x2,y1≠y2,以MN為邊構(gòu)造菱形,若該菱形的兩條對角分平行于x軸、y軸,則稱該菱形為邊的“坐標菱形”.
(1)已知點A(2,0),B(0,3),則以AB為邊的“坐標菱形”的面積為 ;
(2)若點C(1,2),點D在直線x=5上,以CD為邊的“坐標菱形”為正方形,求直線CD的函數(shù)表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com