【題目】若M2(﹣4x3y5)=﹣16x7y9 , 求你求出M.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y= x﹣6分別交x軸,y軸于A,B,M是反比例函數(shù)y=(x>0)的圖象上位于直線上方的一點(diǎn),MC∥x軸交AB于C,MD⊥MC交AB于D,ACBD=4,則k的值為( )
A.﹣3 B.﹣4 C.﹣5 D.﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在x軸上有點(diǎn)P(a,0)(其中a>2),過(guò)點(diǎn)P作x斜的蓬線,分別交函數(shù) 和 的圖象于點(diǎn)C、D。
(1)求點(diǎn)A的坐標(biāo)
(2)若OB=CD,求a的值
(3)在(2)條件下若以0D線段為邊,作正方形0DEF,求直線EF的表達(dá)式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( 。
A.2x3(﹣3x2)=﹣6x6
B.2a24a2=8a2
C.(a+b)(b﹣a)=a2﹣b2
D.(2a2b3)23a2b=12a6b7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:如果關(guān)于的一元二次方程有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根是另一個(gè)根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論:
①方程是倍根方程;
②若關(guān)于的方程是倍根方程,則a=±3;
③若關(guān)于x的方程是倍根方程,則拋物線與x軸的公共點(diǎn)的坐標(biāo)是(2,0)和(4,0);
④若點(diǎn)(m,n)在反比例函數(shù)的圖象上,則關(guān)于x的方程是倍根方程
上述結(jié)論中正確的有( )
A.①② B.③④ C.②③ D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=50°,∠ACB=60°,點(diǎn)E在BC的延長(zhǎng)線上,∠ABC的平分線BD與∠ACE的平分線CD相交于點(diǎn)D,連接AD,下列結(jié)論中不正確的是( )
A.∠BAC=70°
B.∠DOC=90°
C.∠BDC=35°
D.∠DAC=55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).
(1)求證無(wú)論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過(guò)第三象限,求k的取值范圍;
(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC中,AO是高,D為AO上一點(diǎn),以CD為一邊,在CD下方作等邊△CDE,連接BE.
(1)求證:AD=BE;
(2)過(guò)點(diǎn)C作CH⊥BE,交BE的延長(zhǎng)線于H,若BC=8,求CH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑CD=6,A,B為圓周上兩點(diǎn),且四邊形OABC是平行四邊形。過(guò)A點(diǎn)作直線EF∥BD,分別交CD,CB的延長(zhǎng)線于點(diǎn)E,F,AO與BD交于G點(diǎn).
(1)求證:EF是⊙O的切線;
(2)求AE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com