【題目】分解因式:a2-4=__________

【答案】(a+2)(a-2).

【解析】

先把式子寫成a2-22,符合平方差公式的特點,再利用平方差公式分解因式.

a2-4=a2-22=(a+2)(a-2).

故答案為(a+2)(a-2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,E是直線AB,CD內(nèi)部一點,AB∥CD,連接EA,ED.
(1)探究猜想: ①若∠A=30°,∠D=40°,則∠AED等于多少度?
②若∠A=20°,∠D=60°,則∠AED等于多少度?
③猜想圖1中∠AED,∠EAB,∠EDC的關(guān)系并證明你的結(jié)論.

(2)拓展應(yīng)用: 如圖2,射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域③、④位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:∠PEB,∠PFC,∠EPF的關(guān)系(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖②的形狀拼成一個正方形.
(1)圖②中的陰影部分的正方形邊長為
(2)觀察圖②,三個代數(shù)式(m+n)2 , (m﹣n)2 , mn之間的等量關(guān)系是;
(3)觀察圖③,你能得到怎樣的代數(shù)恒等式呢?;
(4)試畫出一個幾何圖形,使它的面積能表示(m+n)(m+2n)=m2+3mn+2n2 . (畫在虛線框內(nèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2(3m+2) x2m20(m>0).

(1)求證:方程有兩個不相等的實數(shù)根且其中一個根為定值;

(2)設(shè)方程的兩個實數(shù)根分別為x1、x2(其中x1<x2),y是關(guān)于m的函數(shù),y7x1mx2,求這個函數(shù)的表達(dá)式;并求當(dāng)自變量m的取值范圍滿足什么條件時,y≤3m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是二次函數(shù)y=ax2+bx+c(a≠0)的圖象,現(xiàn)有下列說法: ①a>0;②c>0;③4a﹣b+c<0;④當(dāng)﹣1<x<3時,y>0.
其中正確的個數(shù)為(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C=90°,AB=10cm,BC=6cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.

(1)出發(fā)2秒后,求ABP的面積;

(2)當(dāng)t為幾秒時,BP平分∠ABC;

(3)t為何值時,BCP為等腰三角形?

(4)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當(dāng)P、Q中有一點到達(dá)終點時,另一點也停止運動.當(dāng)t為何值時,直線PQABC的周長分成相等的兩部分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x2=4,則x=_____;若|a﹣2|=3,則a=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,對角線AC、BD相交于點O,過點O作一條直線分別交DA、BC的延長線于點E、F,連接BE、DF.
(1)求證:四邊形BFDE是平行四邊形;
(2)若EF⊥AB,垂足為M,tan∠MBO= ,求EM:MF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)實數(shù)m滿足______條件時,一元二次方程x2-2x-m=0有兩個不相等的實數(shù)根.

查看答案和解析>>

同步練習(xí)冊答案