如圖,⊙P與y軸相切于坐標(biāo)原點(diǎn)O(0,0),與x軸相交于點(diǎn)A(5,0),過點(diǎn)A的直線AB與y軸的正半軸交于點(diǎn)B,與⊙P交于點(diǎn)C.
(1)已知AC=3,求點(diǎn)B的坐標(biāo);
(2)若AC=a,D是OB的中點(diǎn).問:點(diǎn)O、P、C、D四點(diǎn)是否在同一圓上?請說明理由.如果這四點(diǎn)在同一圓上,記這個圓的圓心為O1,函數(shù)的圖象經(jīng)過點(diǎn)O1,求k的值(用含a的代數(shù)式表示).

【答案】分析:(1)此題有兩種解法:
解法一:連接OC,根據(jù)OA是⊙P的直徑,可得OC⊥AB,利用勾股定理求得OC,再求證Rt△AOC∽Rt△ABO,利用其對應(yīng)變成比例求得OB即可;
解法二:連接OC,根據(jù)OA是⊙P的直徑,可得∠ACO=90°,利用勾股定理求得OC,過C作CE⊥OA于點(diǎn)E,分別求得CE、0E,設(shè)經(jīng)過A、C兩點(diǎn)的直線解析式為:y=kx+b.
把點(diǎn)A(5,0)、代入上式解得即可.
(2)連接CP、CD、DP,根據(jù)OC⊥AB,D為OB上的中點(diǎn),可得,求證Rt△PDO和Rt△PDC是同以PD為斜邊的直角三角形,可得PD上的中點(diǎn)到點(diǎn)O、P、C、D四點(diǎn)的距離相等,由上可知,經(jīng)過點(diǎn)O、P、C、D的圓心O1是DP的中點(diǎn),圓心,由(1)知:Rt△AOC∽Rt△ABO,可得,求得:AB、OD即可.
解答:解:(1)解法一:連接OC,
∵OA是⊙P的直徑,
∴OC⊥AB,
在Rt△AOC中,,
在Rt△AOC和Rt△ABO中,
∵∠CAO=∠OAB
∴Rt△AOC∽Rt△ABO,
,即,
,


解法二:連接OC,因?yàn)镺A是⊙P的直徑,
∴∠ACO=90°
在Rt△AOC中,AO=5,AC=3,
∴OC=4,
過C作CE⊥OA于點(diǎn)E,則:
即:,
,(2分)
,
,
設(shè)經(jīng)過A、C兩點(diǎn)的直線解析式為:y=kx+b.
把點(diǎn)A(5,0)、代入上式得:
解得:,
,
∴點(diǎn)

(2)點(diǎn)O、P、C、D四點(diǎn)在同一個圓上,理由如下:
連接CP、CD、DP,
∵OC⊥AB,D為OB上的中點(diǎn),
,
∴∠3=∠4,
又∵OP=CP,
∴∠1=∠2,
∴∠1+∠3=∠2+∠4=90°,
∴PC⊥CD,又∵DO⊥OP,
∴Rt△PDO和Rt△PDC是同以PD為斜邊的直角三角形,
∴PD上的中點(diǎn)到點(diǎn)O、P、C、D四點(diǎn)的距離相等,
∴點(diǎn)O、P、C、D在以DP為直徑的同一個圓上;
由上可知,經(jīng)過點(diǎn)O、P、C、D的圓心O1是DP的中點(diǎn),圓心,
由(1)知:Rt△AOC∽Rt△ABO,
,
求得:AB=,在Rt△ABO中,,
OD=,
,點(diǎn)O1在函數(shù)的圖象上,
,

點(diǎn)評:此題主要考查相似三角形的判定與性質(zhì),待定系數(shù)法求反比例函數(shù)關(guān)系式,直角三角形斜邊上的中線,勾股定理,圓周角定理等知識點(diǎn)的理解和掌握,綜合性較強(qiáng),有一定的拔高難度,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,⊙P與x軸相切于坐標(biāo)原點(diǎn)O,點(diǎn)A(0,2)是⊙P與y軸的交點(diǎn),點(diǎn)B(-2
2
,0)在x精英家教網(wǎng)軸上.連接BP交⊙P于點(diǎn)C,連接AC并延長交x軸于點(diǎn)D.
(1)求線段BC的長;
(2)求直線AC的關(guān)系式;
(3)當(dāng)點(diǎn)B在x軸上移動時,是否存在點(diǎn)B,使△BOP相似于△AOD?若存在,求出符合條件的點(diǎn)B的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙M與x軸相切于原點(diǎn),平行于y軸的直線交圓于P、Q兩點(diǎn),P點(diǎn)在Q點(diǎn)的下方.若P點(diǎn)的坐標(biāo)是(2,1),求圓心M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙M與x軸相切于原點(diǎn),平行于y軸的直線交⊙M于P、Q兩點(diǎn),P點(diǎn)在Q點(diǎn)的下方.若點(diǎn)P的坐標(biāo)是(2,1),則圓心M的坐標(biāo)是
(0,2.5)
(0,2.5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•倉山區(qū)模擬)如圖,⊙M與x軸相切與原點(diǎn),平行于y軸的直線交⊙M于P、Q兩點(diǎn),P點(diǎn)在Q點(diǎn)的下方,若點(diǎn)P的坐標(biāo)是(
2
,2-
2
)
,PQ=2
2

(1)求⊙M的半徑R;
(2)求圖中陰影部分的面積(精確到0.1);
(3)已知直線AB對應(yīng)的一次函數(shù)y=x+2+2
2
,求證:AB是⊙M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔西南州模擬)如圖,⊙P與x軸相切于坐標(biāo)原點(diǎn)O,點(diǎn)A(0,2)是⊙P與y軸的交點(diǎn),點(diǎn)B(-2
2
,0)在x軸上,連接BP交⊙P于點(diǎn)C,連接AC并延長交x軸于點(diǎn)D.
(1)求BC的長;
(2)寫出經(jīng)過點(diǎn)A、點(diǎn)(1,0)、點(diǎn)(-1,6)的拋物線的解析式;
(3)求直線AC的函數(shù)解析式;
(4)點(diǎn)B在x軸上移動時,是否存在一點(diǎn)B′,使B′OP相似于△AOD?若存在,求出符合條件的點(diǎn)B'的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案