【題目】如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF.在此運(yùn)動(dòng)變化的過程中,請(qǐng)?zhí)骄浚?
(1)求證:△DFE是等腰直角三角形;
(2)四邊形CEDF的面積是否發(fā)生變化?若不變化,請(qǐng)求出面積.

【答案】
(1)解:連接CD,

∵△ABC是等腰直角三角形,

∴∠DCB=∠A=45°,CD=AD=DB,

∵AE=CF,

在△ADE與△CDF中,

,

∴△ADE≌△CDF,

∴DE=DF,∠CDF=∠ADE,

∵∠ADE+∠CDE=90°,

∴∠CDF+∠CDE=∠EDF=90°,

∴DE⊥DF,

∴△DFE是等腰直角三角形;


(2)解:四邊形CEDF的面積不發(fā)生變化.

理由:∵△ADE≌△CDF,

∴S△CDF=S△ADE

∴S四邊形CEFD=S△ADC

∴四邊形CEDF的面積是為定值,

∴四邊形CEDF的面積為 × ×4×4=4


【解析】(1)連接CD,由SAS定理可證△CDF和△ADE全等,從而可證∠EDF=90°,DF=DE.所以△DEF是等腰直角三角形;(2)由割補(bǔ)法可知四邊形CDFE的面積保持不變,利用三角形的面積公式求出答案.
【考點(diǎn)精析】本題主要考查了等腰直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車從百貨大樓出發(fā)負(fù)責(zé)送貨,向東走了 5 千米到達(dá)小明家,繼續(xù)向東走了 1.5 千米到達(dá)小紅家,然后向西走了 9.5 千米到達(dá)小剛家,最后返回百貨大樓.

(1)以百貨大樓為原點(diǎn),向東為正方向,1 個(gè)單位長度表示 1 千米,請(qǐng)你在數(shù)軸上標(biāo)出小明、小紅、小剛家的位置.(小明家用點(diǎn) A 表示,小紅家用點(diǎn) B 表示,小剛家用點(diǎn) C 表示)

(2)小明家與小剛家相距多遠(yuǎn)?

(3)若貨車每千米耗油 0.6 升,那么這輛貨車此次送貨共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(1)7(2x–1)–3(4x–1)=4(3x+2)–1;

(2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】青島交運(yùn)集團(tuán)出租車司機(jī)張師傅某天下午的營運(yùn)全是在東西走向的吉林路上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行車?yán)锍?/span>單位:千米如下:,,,,,,

(1)張師傅這天最后到達(dá)目的地時(shí),在下午出車時(shí)的出發(fā)地哪個(gè)方向?距離出發(fā)地多遠(yuǎn)?

(2)張師傅這天下午共行車多少千米?

(3)若每千米耗油,則這天下午張師傅用了多少升油?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸交點(diǎn)為A(﹣3,0),與y軸交點(diǎn)為B,且與正比例函數(shù)y=x的圖象交于點(diǎn)C(m,4).

(1)求m的值及一次函數(shù)y=kx+b的表達(dá)式;

(2)觀察函數(shù)圖象,直接寫出關(guān)于x的不等式x<kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

①最大的負(fù)整數(shù)是﹣1;②數(shù)軸上表示數(shù)2 和﹣2的點(diǎn)到原點(diǎn)的距離相等;③當(dāng)a≤0時(shí),|a|=﹣a成立;④a的倒數(shù)是;(﹣2)2 和﹣22相等.

A. 2 個(gè) B. 3 個(gè) C. 4 個(gè) D. 5 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個(gè)結(jié)論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結(jié)論有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠CDB=30°,CD=2 ,則陰影部分圖形的面積為(
A.4π
B.2π
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1

(1)當(dāng)∠A為70°時(shí),

∵∠ACD -∠ABD=∠____________

∴∠ACD -∠ABD=______________°

∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線

∴∠A1CD -∠A1BD=(∠ACD-∠ABD)

∴∠A1=___________°;

(2)∠A1BC的角平分線與∠A1CD的角平分線交于A2,∠A2BC與A2CD的平分線交于A3,如此繼續(xù)下去可得A4、…、An,請(qǐng)寫出∠A與∠An 的數(shù)量關(guān)系____________;

(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構(gòu)成的角,若∠A+∠D=230度,則∠F=  

(4)如圖3,若E為BA延長線上一動(dòng)點(diǎn),連EC,∠AEC與∠ACE的角平分線交于Q,當(dāng)E滑動(dòng)時(shí)有下面兩個(gè)結(jié)論:①∠Q+∠A1的值為定值;②∠Q —∠A1的值為定值.

其中有且只有一個(gè)是正確的,請(qǐng)寫出正確的結(jié)論,并求出其值.

查看答案和解析>>

同步練習(xí)冊(cè)答案