閱讀下列文字
2010年廣州亞運(yùn)會(huì)前夕某公司生產(chǎn)一種時(shí)令商品每件成本為20元,經(jīng)市場(chǎng)發(fā)現(xiàn)該商品在未來40天內(nèi)的日銷售量為a件,與時(shí)間t天的關(guān)系如下表:
時(shí)間t(天) 1 3 6 10 36
日銷售量a(件) 94 90 84 76 24
未來40天內(nèi),前20天每天的價(jià)格b(元/件)與時(shí)間t的關(guān)系為b=
1
4
t+25(1≤t≤20),后20天每天價(jià)格為c(元/件)與時(shí)間t的關(guān)系式為c=-
1
2
t+40(21≤t≤40)解得下列問題
(1)分析表中的數(shù)據(jù),用所學(xué)過的一次函數(shù),二次函數(shù),反比例函數(shù)知識(shí)確定一個(gè)滿足這些數(shù)據(jù)的a與t的函數(shù)關(guān)系式;
(2)請(qǐng)預(yù)測(cè)未來40天中哪一天日銷售利潤(rùn)最大,最大日銷售利潤(rùn)是多少?
(3)在實(shí)際銷售的前20天中該公司決定銷售一件就捐贈(zèng)n元(n<4)利潤(rùn)給亞運(yùn)會(huì)組委會(huì),通過銷售記錄發(fā)現(xiàn)前20天中,每天扣除捐贈(zèng)后利潤(rùn)隨時(shí)間t的增大而增大,求n的取值范圍.
分析:(1)從表格可看出每天比前一天少銷售2件,所以判斷為一次函數(shù)關(guān)系式;
(2)日利潤(rùn)=日銷售量×每件利潤(rùn),據(jù)此分別表示前20天和后20天的日利潤(rùn),根據(jù)函數(shù)性質(zhì)求最大值后比較得結(jié)論;
(3)列式表示前20天中每天扣除捐贈(zèng)后的日銷售利潤(rùn),根據(jù)函數(shù)性質(zhì)求n的取值范圍.
解答:解:(1)將
t=1
a=96
,
t=3
a=90
代入一次函數(shù)a=kt+m,
k+m=94
3k+m=90
k=-2
m=96

∴a=-2t+96,
經(jīng)檢驗(yàn),其他點(diǎn)的坐標(biāo)均適合以上解析式
故所求函數(shù)的解析式為a=-2t+96.

(2)設(shè)前20天日銷售利潤(rùn)為P1,后20天日銷售利潤(rùn)為P2
由P1=(-2t+96)(
1
4
t+5)=-
1
2
t2+14t+480=-
1
2
(t-14)2+578,
∵1≤t≤20,∴當(dāng)t=14時(shí),P1有最大值578元,
由P2=(-2t+96)(-
1
2
t+20)=t2-88t+1920=(t-44)2-16,
∵21≤t≤40且對(duì)稱軸為t=44,∴函數(shù)P2在21≤t≤40上隨t的增大而減小,
∴當(dāng)t=21時(shí),P2有最大值為(21-44)2-16=529-16=513(元),
∵578>513,故第14天時(shí),銷售利潤(rùn)最大,為578元.

(3)P3=(-2t+96)(
1
4
t+5-n)=-
1
2
t2+(14+2n)t+480-96n,
∴對(duì)稱軸為t=14+2n,
∵1≤t≤20,
∴14+2n≥20得n≥3時(shí),P3隨t的增大而增大,
又∵n<4,
∴3≤n<4.
點(diǎn)評(píng):本題考查二次函數(shù)的應(yīng)用,注意:(1)熟練掌握各函數(shù)的性質(zhì)和圖象特征,針對(duì)所給條件作出初步判斷后需驗(yàn)證其正確性;(2)最值問題需由函數(shù)的性質(zhì)求解時(shí),正確表達(dá)關(guān)系式是關(guān)鍵.同時(shí)注意自變量的取值范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下列文字
2010年廣州亞運(yùn)會(huì)前夕某公司生產(chǎn)一種時(shí)令商品每件成本為20元,經(jīng)市場(chǎng)發(fā)現(xiàn)該商品在未來40天內(nèi)的日銷售量為a件,與時(shí)間t天的關(guān)系如下表:
時(shí)間t(天)1361036
日銷售量a(件)9490847624
未來40天內(nèi),前20天每天的價(jià)格b(元/件)與時(shí)間t的關(guān)系為b=數(shù)學(xué)公式t+25(1≤t≤20),后20天每天價(jià)格為c(元/件)與時(shí)間t的關(guān)系式為c=-數(shù)學(xué)公式t+40(21≤t≤40)解得下列問題
(1)分析表中的數(shù)據(jù),用所學(xué)過的一次函數(shù),二次函數(shù),反比例函數(shù)知識(shí)確定一個(gè)滿足這些數(shù)據(jù)的a與t的函數(shù)關(guān)系式;
(2)請(qǐng)預(yù)測(cè)未來40天中哪一天日銷售利潤(rùn)最大,最大日銷售利潤(rùn)是多少?
(3)在實(shí)際銷售的前20天中該公司決定銷售一件就捐贈(zèng)n元(n<4)利潤(rùn)給亞運(yùn)會(huì)組委會(huì),通過銷售記錄發(fā)現(xiàn)前20天中,每天扣除捐贈(zèng)后利潤(rùn)隨時(shí)間t的增大而增大,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年1月江西省南昌市三校聯(lián)考九年級(jí)數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下列文字
2010年廣州亞運(yùn)會(huì)前夕某公司生產(chǎn)一種時(shí)令商品每件成本為20元,經(jīng)市場(chǎng)發(fā)現(xiàn)該商品在未來40天內(nèi)的日銷售量為a件,與時(shí)間t天的關(guān)系如下表:
時(shí)間t(天)1361036
日銷售量a(件)9490847624
未來40天內(nèi),前20天每天的價(jià)格b(元/件)與時(shí)間t的關(guān)系為b=t+25(1≤t≤20),后20天每天價(jià)格為c(元/件)與時(shí)間t的關(guān)系式為c=-t+40(21≤t≤40)解得下列問題
(1)分析表中的數(shù)據(jù),用所學(xué)過的一次函數(shù),二次函數(shù),反比例函數(shù)知識(shí)確定一個(gè)滿足這些數(shù)據(jù)的a與t的函數(shù)關(guān)系式;
(2)請(qǐng)預(yù)測(cè)未來40天中哪一天日銷售利潤(rùn)最大,最大日銷售利潤(rùn)是多少?
(3)在實(shí)際銷售的前20天中該公司決定銷售一件就捐贈(zèng)n元(n<4)利潤(rùn)給亞運(yùn)會(huì)組委會(huì),通過銷售記錄發(fā)現(xiàn)前20天中,每天扣除捐贈(zèng)后利潤(rùn)隨時(shí)間t的增大而增大,求n的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案