【題目】如圖,為等邊三角形,,、相交于點,于點,,

(1)求證:;

(2)求的長.

【答案】(1)見解析;(2)7.

【解析】

1)根據(jù)等邊三角形的三條邊都相等可得AB=CA,每一個角都是60°可得,∠BAE=ACD=60°,然后利用邊角邊證明ABECAD全等,根據(jù)全等三角形對應邊相等證明即可;

2)根據(jù)全等三角形對應角相等可得∠CAD=ABE,然后求出∠BPQ=60°,再根據(jù)直角三角形兩銳角互余求出∠PBQ=30°,然后根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出BP=2PQ,再根據(jù)AD=BE=BP+PE代入數(shù)據(jù)進行計算即可得解.

(1)證明:為等邊三角形,

,;

中,

,

;

(2)

,

,

,

中,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形ABCD的頂點A6,0),C0,4)點D與坐標原點O重合,動點P從點O出發(fā),以每秒2個單位的速度沿OABC的路線向終點C運動,連接OP、CP,設點P運動的時間為t秒,△CPO的面積為S,下列圖象能表示tS之間函數(shù)關系的是(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC 中,ABACD 是直線 BC 上一點(不與點 B、C 重合),以 AD 為一邊在 AD的右側作△ADE,ADAE,∠DAE=∠BAC,連接 CE.

1)如圖 1,當點 D 在線段 BC 上時,求證:ABD≌△ACE;

2)如圖 2,當點 D 在線段 BC 上時,如果∠BAC90°,求∠BCE 的度數(shù);

3)如圖 3,若∠BAC=α,∠BCE=β.D 在線段 CB 的延長線上時,則α、β之間有怎樣 的數(shù)量關系?并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某檢修小組從A地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負,一天中七次行駛記錄如下。(單位:km

1)在第幾次記錄時離A地最遠,并求出最遠距離。

2)求收工時距A地多遠?在A地的什么方向?

3)若每千米耗油0.3升,問共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在校園文化藝術節(jié)中,九年級一班有1名男生和2名女生獲得美術獎,另有2名男生和2名女生獲得音樂獎.

(1)從獲得美術獎和音樂獎的7名學生中選取1名參加頒獎大會,求剛好是男生的概率;

(2)分別從獲得美術獎、音樂獎的學生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,ABAC,以AB為直角邊作等腰直角三角形ABD,與BC邊交于點E,

1)若∠ACE18°,則∠ECD   

2)探索:∠ACE與∠ACD有怎樣的數(shù)量關系?猜想并證明.

3)如圖2,作△ABC的高AF并延長,交BD于點G,交CD延長線于點H,求證:CH2+DH22AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,O為菱形ABCD的對稱中心,已知C2,0),D0,﹣1),N為線段CD上一點(不與CD重合).

1)求以C為頂點,且經(jīng)過點D的拋物線解析式;

2)設N關于BD的對稱點為N1N關于BC的對稱點為N2,求證:△N1BN2∽△ABC

3)求(2)中N1N2的最小值;

4)過點Ny軸的平行線交(1)中的拋物線于點P,點Q為直線AB上的一個動點,且∠PQA=∠BAC,求當PQ最小時點Q坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖等邊三角形ABC的邊長為4,ADBC邊上的中線,FAD邊上的動點,EAC邊上一點AE2EFCF取得最小值時,∠ECF的度數(shù)為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,A=30°,BD是∠ABC的平分線,CD=5cm,求AB的長.

查看答案和解析>>

同步練習冊答案