【題目】如圖,在△ABC中,∠ACB=90°,點D是AB的中點,過點D作DE⊥AC于點E, 延長DE到點F,使得EF=DE,連接AF,CF.
(1)根據題意,補全圖形;
(2)求證:四邊形ADCF是菱形;
(3)若AB=8,∠BAC=30°,求菱形ADCF的面積.
【答案】
(1)解:如圖所示.
(2)證明:∵DE⊥AC,
∴∠AED=∠ACB=90°,
∴DE∥BC,
∵AD=DB,
∴AE=EC,∵ED=EF,
∴四邊形ADCF是平行四邊形,
∵AC⊥DF,
∴四邊形ADCF是菱形.
(3)解:在Rt△ACB中,∵AB=8,∠BAC=30°,
∴BC= AB=4,AC= BC=4 ,
∵AE=EC,AD=DB,
∴DE= BC=2,
∴DF=2DE=4,
∴S菱形ADCF= ACDF= ×4 ×4=8 .
【解析】(1)根據題意畫出圖形即可;(2)首先證明AE=CE,DE=EF,推出四邊形ADCF是平行四邊形,再根據AC⊥DF,推出四邊形ADCF是菱形;(3)求出菱形的對角線的長即可解決問題.
【考點精析】解答此題的關鍵在于理解直角三角形斜邊上的中線的相關知識,掌握直角三角形斜邊上的中線等于斜邊的一半.
科目:初中數學 來源: 題型:
【題目】如圖,邊長為6的大正方形中有兩個小正方形,若兩個小正方形的面積分別為S1和S2,比較S1與S2的大。ā 。
A. S1>S2 B. S1=S2 C. S1<S2 D. 不能確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A為某封閉圖形邊界的一定點,動點P從點A出發(fā),沿其邊界順時針勻速運動一周,設點P的時間為x,線段AP的長為y,表示y與x的函數關系的圖象大致如圖所示,則該封閉圖形可能是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD,OF平分∠COE.
(1)若∠AOC=76°,求∠BOF的度數;
(2)若∠BOF=36°,求∠AOC的度數;
(3)若|∠AOC﹣∠BOF|=α°,請直接寫出∠AOC和∠BOF的度數.(用含的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.
(1)試判斷BF與DE的位置關系,并說明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解并在括號內填注理由:
如圖,已知AB∥CD,∠1=∠2,試說明EP∥FQ.
證明:∵AB∥CD,
∴∠MEB=∠MFD(_____________)
又∵∠1=∠2,
∴∠MEB-∠1=∠MFD-∠2,
即∠MEP=∠______
∴EP∥____.(_______________)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com