【題目】已知二次函數(shù)yax2bxc的圖像如圖所示,對(duì)稱軸為直線x1.有位學(xué)生寫出了以下五個(gè)結(jié)論:

1ac>0;

2)方程ax2bxc0的兩根是x1=-1,x23

32ab0;

4)當(dāng)x>1時(shí),yx的增大而減。

53a2bc>0

則以上結(jié)論中不正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】B

【解析】試題分析:由二次函數(shù)y= +bx+c的圖象可得:拋物線開口向下,即a0,拋物線與y軸的交點(diǎn)在y軸正半軸,即c0,ac0,(1)錯(cuò)誤;由圖象可得拋物線與x軸的一個(gè)交點(diǎn)為(3,0),又對(duì)稱軸為直線x=1,拋物線與x軸的另一個(gè)交點(diǎn)為(﹣10),則方程+bx+c=0的兩根是=﹣1, =3,(2)正確.對(duì)稱軸為直線x=1,=1,即2a+b=0,(3)錯(cuò)誤;由函數(shù)圖象可得:當(dāng)x1時(shí),yx的增大而減小,故(4)正確;綜上所知正確的有(2)(4)兩個(gè).

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長都是1,ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)(網(wǎng)格線的交點(diǎn))上.

(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系,使點(diǎn)A坐標(biāo)為(1,3)點(diǎn)B坐標(biāo)為(2,1);

(2)請(qǐng)作出△ABC關(guān)于y軸對(duì)稱的△A'B'C',并寫出點(diǎn)C'的坐標(biāo);

(3)判斷△ABC的形狀.并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的角平分線,線段AD的垂直平分線分別交ABAC于點(diǎn)E、F,連接DE、DF.

(1)試判定四邊形AEDF的形狀,并證明你的結(jié)論.

(2)若DE=13,EF=10,求AD的長.

(3)ABC滿足什么條件時(shí),四邊形AEDF是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB、C、D在同一直線上,ABCD,DEAF,若要使△ACF≌△DBE,則還需要補(bǔ)充一個(gè)條件:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直線CM⊥BC,動(dòng)點(diǎn)D從點(diǎn)C開始沿射線CB方向以每秒3厘米的速度運(yùn)動(dòng),動(dòng)點(diǎn)E也同時(shí)從點(diǎn)C開始在直線CM上以每秒1厘米的速度向遠(yuǎn)離C點(diǎn)的方向運(yùn)動(dòng),連接AD、AE,設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.

(1)請(qǐng)直接寫出CD、CE的長度(用含有t的代數(shù)式表示):CD=   cm,CE=   cm;

(2)當(dāng)t為多少時(shí),△ABD的面積為12 cm2

(3)請(qǐng)利用備用圖探究,當(dāng)t為多少時(shí),△ABD≌△ACE?并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF翻折,點(diǎn)A恰好落在BC邊的A′處,若AB= EFA=60°,則四邊形A′B′EF的周長是(

A. 1+3 B. 3+ C. 4+ D. 5+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用了隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為 .

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.

(3)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競賽,請(qǐng)用畫樹狀圖或列表的方法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D是∠ACB與∠ABC的角平分線的交點(diǎn),BD的延長線交AC于點(diǎn)E.

1)若∠A=80°,求∠BDC的度數(shù);

2)若∠EDC=40°,求∠A的度數(shù);

3)請(qǐng)直接寫出∠A與∠BDC之間的數(shù)量關(guān)系(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個(gè)四邊形紙片ABCD,∠B=D=,把紙片按如圖所示折疊,使點(diǎn)B落在AD邊上的B′點(diǎn),AE是折痕.

1)試判斷B′EDC的位置關(guān)系;并說明理由.

2)如果∠C=,求∠AEB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案