【題目】企業(yè)的污水處理有兩種方式:一種是輸送到污水廠進(jìn)行集中處理,另一種是通過企業(yè)的自身設(shè)備進(jìn)行處理.某企業(yè)去年每月的污水量均為12000噸,由于污水廠處于調(diào)試階段,污水處理能力有限,該企業(yè)投資自建設(shè)備處理污水,兩種處理方式同時進(jìn)行.1至6月,該企業(yè)向污水廠輸送的污水量y1(噸)與月份x(1≤x≤6,且x取整數(shù))之間滿足的函數(shù)關(guān)系如下表:
月份x(月) | 1 | 2 | 3 | 4 | 5 | 6 |
輸送的污水量y1(噸) | 12000 | 6000 | 4000 | 3000 | 2400 | 2000 |
7至12月,該企業(yè)自身處理的污水量y2(噸)與月份x(7≤x≤12,且x取整數(shù))之間滿足二次函數(shù)關(guān)系式為y2=ax2+c(a≠0).其圖象如圖所示.1至6月,污水廠處理每噸污水的費用:z1(元)與月份x之間滿足函數(shù)關(guān)系式:z1=x,該企業(yè)自身處理每噸污水的費用:z2(元)與月份x之間滿足函數(shù)關(guān)系式:z2=x﹣x2;7至12月,污水廠處理每噸污水的費用均為2元,該企業(yè)自身處理每噸污水的費用均為1.5元.
(1)請觀察題中的表格和圖象,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,分別直接寫出y1,y2與x之間的函數(shù)關(guān)系式;
(2)請你求出該企業(yè)去年哪個月用于污水處理的費用W(元)最多,并求出這個最多費用.
【答案】(1)y1=(1≤x≤6,且x取整數(shù));y2=x2+10000(7≤x≤12,且x取整數(shù));(2)去年5月用于污水處理的費用最多,最多費用是22000元;
【解析】
(1)利用表格中數(shù)據(jù)可以得出xy=定值,則y1與x之間的函數(shù)關(guān)系為反比例函數(shù)關(guān)系求出即可,再利用函數(shù)圖象得出:圖象過(7,10049),(12,10144)點,求出解析式即可;(2)利用當(dāng)1≤x≤6時,以及當(dāng)7≤x≤12時,分別求出處理污水的費用,即可求解.
(1)根據(jù)表格中數(shù)據(jù)可以得出xy=定值,則y1與x之間的函數(shù)關(guān)系為反比例函數(shù)關(guān)系:
y1=,將(1,12000)代入得:
k=1×12000=12000,
故y1=(1≤x≤6,且x取整數(shù));
根據(jù)圖象可以得出:圖象過(7,10049),(12,10144)點,
代入y2=ax2+c(a≠0)得:,
解得:,
故y2=x2+10000(7≤x≤12,且x取整數(shù));
(2)當(dāng)1≤x≤6,且x取整數(shù)時:
W=y1z1+(12000﹣y1)z2=x+(12000﹣)(x﹣x2),
=﹣1000x2+10000x﹣3000,
∵a=﹣1000<0,x=﹣=5,1≤x≤6,
∴當(dāng)x=5時,W最大=22000(元),
當(dāng)7≤x≤12時,且x取整數(shù)時,
W=2×(12000﹣y2)+1.5y2=2×(12000﹣x2﹣10000)+1.5(x2+10000),
=﹣x2+19000,
∵a=﹣<0,x=﹣=0,
當(dāng)7≤x≤12時,W隨x的增大而減小,
∴當(dāng)x=7時,W最大=18975.5(元),
∵22000>18975.5,
∴去年5月用于污水處理的費用最多,最多費用是22000元;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線:經(jīng)過,兩點,且、滿足,過點作軸,交直線:于點,連接.
(1)求直線的函數(shù)表達(dá)式;
(2)在直線上是否存在一點,使得?若存在,求出點的坐標(biāo);若不存在,請說明理由.
(3)點是軸上的一個動點,點是軸上的一個動點,過點作軸的垂線交直線、于點、,若是等腰直角三角形,請直接寫出符合條件的的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張矩形紙片ABCD折疊,使兩個頂點A、C重合,折痕為FG,若AB=4,BC=8.
求(1)線段BF的長;
(2)判斷△AGF形狀并證明;
(3)求線段GF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點,A點的坐標(biāo)為(4,0),C點的坐標(biāo)為(0,6),點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位的速度沿著O→A→B→C→O的路線移動在點P移動過程中,當(dāng)P點到x軸的距離為5個單位時,點P移動的時間為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出四個結(jié)論:①c>0;②若B(﹣,y1),C(﹣,y2)為圖象上的兩點,則y1<y2;③2a﹣b=0;④<0,其中正確的結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結(jié)論正確的是( 。
A. x1+x2=1 B. x1x2=﹣1 C. |x1|<|x2| D. x12+x1=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA⊥OB,AB⊥x軸于C,點A(,1)在反比例函數(shù)y=的圖象上.
(1)求反比例函數(shù)y=的表達(dá)式;
(2)在x軸上存在一點P,使S△AOP= S△AOB, 求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( )
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,點D從點C出發(fā),以2 cm/s 的速度沿折線C→A→B向點B運動,同時點E從點B出發(fā),以1 cm/s的速度沿BC邊向點C運動,設(shè)點E運動的時間為t (單位:s)(0<t<8).
(1) 當(dāng)△BDE 是直角三角形時,求t的值;
(2)若四邊形CDEF是以CD、DE為一組鄰邊的平行四邊形,①設(shè)它的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;②是否存在某個時刻t,使平行四邊形CDEF為菱形?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com