【題目】如圖,在Rt△ABC中,∠ABC=90°,BA=BC.點(diǎn)D是AB的中點(diǎn),連接CD,過點(diǎn)B作BG丄CD,分別交CD、CA于點(diǎn)E、F,與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連接DF.給出以下四個(gè)結(jié)論:

; ②點(diǎn)F是GE的中點(diǎn); ③AF=AB;④S△ABC=5S△BDF,其中正確的結(jié)論序號是__________

【答案】①③

【解析】試題分析:Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB∴AG∥BC,∴△AFG∽△CFB,

,∵BA=BC,故正確;∵∠ABC=90°,BG⊥CD∴∠DBE+∠BDE=∠BDE+∠BCD=90°,

∴∠DBE=∠BCD,∵AB=CB,點(diǎn)DAB的中點(diǎn),∴BD=AB=CB,∵tan∠BCD==Rt△ABG中,tan∠DBE==,∴FG=FB,故錯(cuò)誤;∵△AFG∽△CFB∴AFCF=AGBC=12,

∴AF=AC,∵AC=AB,∴AF=AB,故正確;∵BD=ABAF=AC,∴SABC=6SBDF,故錯(cuò)誤.故答案為:①③

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,(1)作△ABC的外接⊙O(用尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若AB=6cm,AC=BC=5cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動漫節(jié)開幕前,某動漫公司預(yù)測某種動漫玩具能夠暢銷,就分兩批分別用32000元和68000元購進(jìn)了這種玩具銷售,其中第二批購進(jìn)數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每套進(jìn)價(jià)多了10元.

(1)該動漫公司這兩批各購進(jìn)多少套玩具?

(2)如果這兩批玩具每套售價(jià)相同,且全部銷售后總利潤不少于20000元,那么每套售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,屬于真命題的是( 。
A.各邊相等的多邊形是正多邊形
B.矩形的對角線互相垂直
C.三角形的中位線把三角形分成面積相等的兩部分
D.對頂角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

我們知道,四邊形具有不穩(wěn)定性,容易變形,如圖1,一個(gè)矩形發(fā)生變形后成為一個(gè)平行四邊形,設(shè)這個(gè)平行四邊形相鄰兩個(gè)內(nèi)角中較小的一個(gè)內(nèi)角為α,我們把的值叫做這個(gè)平行四邊形的變形度.

1)若矩形發(fā)生變形后的平行四邊形有一個(gè)內(nèi)角是120度,則這個(gè)平行四邊形的變形是 

猜想證明:

2)設(shè)矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1,S2 之間的數(shù)量關(guān)系,并說明理由;

拓展探究:

3)如圖2,在矩形ABCD中,EAD邊上的一點(diǎn),且AB2=AEAD,這個(gè)矩形發(fā)生變形后為平行四邊形A1B1C1D1,E1E的對應(yīng)點(diǎn),連接B1E1,B1D1,若矩形ABCD的面積為4 m0),平行四邊形A1B1C1D1的面積為2m0),試求∠A1E1B1+A1D1B1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果僅用一種正多邊形進(jìn)行鑲嵌,下列正多邊形:正五邊形、正方形、正六邊形、正八邊形、正三角形中不能構(gòu)成平面鑲嵌的有( 。﹤(gè).
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為20元/千克.市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w (千克)與銷售價(jià)x (元/千克)有如下關(guān)系:w=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為y (元).

(1)求y與x之間的函數(shù)關(guān)系式,自變量x的取值范圍;

(2)當(dāng)銷售價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D

求證:(1∠ECD=∠EDC

2OC=OD;

3OE是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:197×203__________

查看答案和解析>>

同步練習(xí)冊答案