【題目】在△ABC中,CACB,0°<∠C90°.過點(diǎn)A作射線APBC,點(diǎn)M、N分別在邊BC、AC上(點(diǎn)M、N不與所在線段端點(diǎn)重合),且BMAN,連結(jié)BN并延長(zhǎng)交AP于點(diǎn)D,連結(jié)MA并延長(zhǎng)交AD的垂直平分線于點(diǎn)E,連結(jié)ED

(猜想)如圖,當(dāng)∠C45°時(shí),可證△BCN≌△ACM,從而得出∠CBN=∠CAM,進(jìn)而得出∠BDE的大小為   度.

(探究)如圖,若∠Cα

1)求證:△BCN≌△ACM

2)∠BDE的大小為   度(用含a的代數(shù)式表示).

(應(yīng)用)如圖,當(dāng)∠C90°時(shí),連結(jié)BE.若BC3,∠BAM15°,則△BDE的面積為   

【答案】【猜想】135°;【探究】(1)詳見解析;(2α或(180α);【應(yīng)用】99

【解析】

猜想:如圖(1)中,延長(zhǎng)EDBC于點(diǎn)F,交AC于點(diǎn)O.想辦法證明∠BNC=∠BFE,再利用三角形的外角的性質(zhì)即可解決問題;

探究:(1)同理根據(jù)SAS證明:△BCN≌△ACM;

2)分兩種情形討論求解即可,①如圖2中,當(dāng)點(diǎn)EAM的延長(zhǎng)線上時(shí),②如圖4中,當(dāng)點(diǎn)EMA的延長(zhǎng)線上時(shí),分別計(jì)算即可;

應(yīng)用:如圖3,分別計(jì)算BDDE的長(zhǎng),證明△EAD是等邊三角形,根據(jù)三角形的面積公式可得結(jié)論.

猜想:證明:如圖1中,延長(zhǎng)EDBC于點(diǎn)F,交AC于點(diǎn)O,

CBCA,

∴∠ABM=∠BAN

CACB,BMAN,

CMCN

∵∠C=∠C,

∴△BCN≌△ACMSAS),

∴∠CBN=∠CAM,

EAD的垂直平分線上的點(diǎn),

EAED,

∴∠EAD=∠EDA,

ADBC,

∴∠EAD=∠EMF,∠EDA=∠EFM,

∴∠BNC=∠BFE

∴∠NOD+BDF=∠C+FOC,

∵∠C45°,∠FOC=∠NOD,

∴∠NDO45°

∴∠BDE135°,

故答案為:135°;

探究:

1)證明:∵CACB,BMAN,

CAANCBBM,

MCNC

又∵∠C=∠C,

∴△BCN≌△ACMSAS);

2)分兩種情況:

①如圖2中,當(dāng)點(diǎn)EAM的延長(zhǎng)線上時(shí),

易證:∠CBN=∠ADB=∠CAN,∠ACB=∠CAD,

EAED,

∴∠EAD=∠EDA

∴∠CAM+CAD=∠BDE+ADB,

∴∠BDE=∠CAD=∠ACBα

如圖4中,當(dāng)點(diǎn)EMA的延長(zhǎng)線上時(shí),延長(zhǎng)EDBC的延長(zhǎng)線于點(diǎn)F,

同理得BCN≌△ACMSAS),

∴∠CBN=∠CAM,

同理得:∠BNC=∠AMC=∠BFE,

∴∠BNC+NBC=∠NBC+BFE

∴∠ACB=∠BDFα,

∴∠BDE180°α

故答案為:α或(180α);

應(yīng)用:

如圖3,同(2)得:∠BDE180°﹣∠ACB90°,

∵∠ACB90°,ACBC3

∴∠BAC=∠ABC45°,

∵∠BAM15°,

∴∠CAM=∠CBN30°,

RtBNC中,CN,BN,

ANACCN3,

ADBC,

∴∠DAN=∠ACB90°,∠ADN=∠NBC30°,

DN2AN62,ADAN33,

BDBN+DN2+626,

EAED,∠EAD60°,

∴△EAD是等邊三角形,

EDAD33

SBDE

故答案為:99

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵≥0, ∴≥0,

,只有當(dāng)ab時(shí),等號(hào)成立.

結(jié)論:在ab均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)ab時(shí),a+b有最小值

根據(jù)上述內(nèi)容,回答下列問題:

m0,只有當(dāng)m 時(shí),有最小值

思考驗(yàn)證:如圖1,AB為半圓O的直徑,C為半圓上任意一點(diǎn)(與點(diǎn)A、B不重合),過點(diǎn)CCDAB,垂足為D,ADa,DBb

試根據(jù)圖形驗(yàn)證,并指出等號(hào)成立時(shí)的條件.

探索應(yīng)用:如圖2,已知A(3,0),B(0,-4)P為雙曲線x0)上的任意一點(diǎn),過點(diǎn)PPCx軸于點(diǎn)CPDy軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說明此時(shí)四邊形ABCD的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,點(diǎn)同時(shí)從點(diǎn)出發(fā),以的速度分別沿、勻速運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.過點(diǎn)的垂線于點(diǎn),點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱.

1)當(dāng)_____時(shí),點(diǎn)的平分線上;

2)當(dāng)_____時(shí),點(diǎn)邊上;

3)設(shè)重合部分的面積為,求之間的函數(shù)關(guān)系式,并寫的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片的中點(diǎn),上一動(dòng)點(diǎn),沿折疊,點(diǎn)落在點(diǎn)處;延長(zhǎng)點(diǎn),連接.

1)求證:;

2)當(dāng)時(shí),將沿折疊,點(diǎn)落在線段上點(diǎn).

①求證:

②如果,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx與反比例函數(shù)yx0)的圖象相交于點(diǎn)D,點(diǎn)A為直線yx上一點(diǎn),過點(diǎn)AACx軸于點(diǎn)C,交反比例函數(shù)yx0)的圖象于點(diǎn)B,連接BD

1)若點(diǎn)B的坐標(biāo)為(82),則k   ,點(diǎn)D的坐標(biāo)為   ;

2)若AB2BC,且△OAC的面積為18,求k的值及△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃石市在創(chuàng)建國(guó)家級(jí)文明衛(wèi)生城市中,綠化檔次不斷提升.某校計(jì)劃購進(jìn)A,B兩種樹木共100棵進(jìn)行校園綠化升級(jí),經(jīng)市場(chǎng)調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.

(1)求A種,B種樹木每棵各多少元?

(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場(chǎng)價(jià)格不變的情況下(不考慮其他因素),實(shí)際付款總金額按市場(chǎng)價(jià)九折優(yōu)惠,請(qǐng)?jiān)O(shè)計(jì)一種購買樹木的方案,使實(shí)際所花費(fèi)用最省,并求出最省的費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在中,以邊為直徑的于點(diǎn),在劣弧上取一點(diǎn)使,延長(zhǎng)依次交于點(diǎn),交

1)求證:;

2)若的直徑等于10,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解本校九年級(jí)學(xué)生期末數(shù)學(xué)考試情況,小亮在九年級(jí)隨機(jī)抽取了一部分學(xué)生的期末數(shù)學(xué)成績(jī)?yōu)闃颖荆譃?/span>)、))、)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖表,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答以下問題:

其中組的期末數(shù)學(xué)成績(jī)?nèi)缦?/span>

1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

2)這部分學(xué)生的期末數(shù)學(xué)成績(jī)的中位數(shù)是 組的期末數(shù)學(xué)成績(jī)的眾數(shù)是 ;

3)這個(gè)學(xué)校九年級(jí)共有學(xué)生人,若分?jǐn)?shù)為()以上為優(yōu)秀,請(qǐng)估計(jì)這次九年級(jí)學(xué)生期末數(shù)學(xué)考試成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今有善行者行一百步,不善行者行六十步(出自《九章算術(shù)》)意思是:同樣時(shí)間段內(nèi),走路快的人能走100步,走路慢的人只能走60步,假定兩者步長(zhǎng)相等,據(jù)此回答以下問題:

1)今不善行者先行一百步,善行者追之,不善行者再行六百步,問孰至于前,兩者幾何步隔之?即:走路慢的人先走100步,走路快的人開始追趕,當(dāng)走路慢的人再走600步時(shí),請(qǐng)問誰在前面,兩人相隔多少步?

2)今不善行者先行兩百步,善行者追之,問幾何步及之?即:走路慢的人先走200步,請(qǐng)問走路快的人走多少步才能追上走路慢的人?

查看答案和解析>>

同步練習(xí)冊(cè)答案