【題目】如圖,小陽發(fā)現(xiàn)電線桿AB的影子落在土坡的坡面CD和地面BC上.量得CD=8米,BC=20米,CD與地面成30°角,且此時測得1米桿的影長為2米,則電線桿的高度為( )
A.9米
B.28米
C.(7+ )米
D.(14+2 )米
【答案】D
【解析】解:如圖,延長AD交BC的延長線于點F,過點D作DE⊥BC的延長線于點E.
∵∠DCE=30°,CD=8米,
∴CE=CDcos∠DCE=8× =4 (米),
∴DE=4米,
設(shè)AB=x,EF=y,
∵DE⊥BF,AB⊥BF,
∴△DEF∽△ABF,
∴ = , = …①,
∵1米桿的影長為2米,根據(jù)同一時間物高與影長成正比可得 = …②,
①②聯(lián)立,解得x=(14+2 )米.
所以答案是:D.
【考點精析】利用相似三角形的應(yīng)用對題目進(jìn)行判斷即可得到答案,需要熟知測高:測量不能到達(dá)頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達(dá)兩點間的舉例,常構(gòu)造相似三角形求解.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會向全校1900名學(xué)生發(fā)起了愛心捐款活動,為了解捐款情況,學(xué)生會隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計圖1和圖2,請根據(jù)相關(guān)信息,解答系列問題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為人,圖1中m的值是 .
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計該校本次活動捐款金額為10元的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教育部制定《數(shù)學(xué)課程標(biāo)準(zhǔn)》要求的課程目標(biāo)之一是通過數(shù)學(xué)學(xué)習(xí),學(xué)生能夠“初步學(xué)會運用數(shù)學(xué)的思維方式去觀察、分析現(xiàn)實社會,去解決日常生活中和其他學(xué)科學(xué)習(xí)中的問題,增強(qiáng)應(yīng)用數(shù)學(xué)的意識.”
看過2003年中央電視臺春節(jié)聯(lián)歡會的人們都知道,魔術(shù)節(jié)目很精彩,看后給人以思考、回味,這些看似神秘的魔術(shù)節(jié)目,很多都依據(jù)著一定的科學(xué)道理,特別是有些還與我們學(xué)習(xí)的數(shù)學(xué)知識有聯(lián)系,請看下面的小魔術(shù):
如圖2所示,魔術(shù)師把4張撲克牌放在桌子上,然后蒙住眼睛,請一位觀眾上臺,把某一張牌旋轉(zhuǎn)180°.魔術(shù)師解除蒙具后,看到4張撲克牌如圖3所示,他很快確定了哪一張牌被旋轉(zhuǎn)過.
你知道這是怎么回事嗎?試?yán)盟鶎W(xué)的數(shù)學(xué)知識,寫一篇數(shù)學(xué)作文解釋其中的道理,題目自擬,字?jǐn)?shù)在200~400字之間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價200元,領(lǐng)帶每條定價40元,廠方開展促銷活動期間,向客戶提供兩種優(yōu)惠方法:①買一套西裝送一條領(lǐng)帶;②西裝和領(lǐng)帶均按定價的90%付款。某商店到該服裝廠購買西裝20件,領(lǐng)帶若干條.
(1)領(lǐng)帶買多少條時,兩種優(yōu)惠方法相同?
(2)購買50條領(lǐng)帶時,應(yīng)采用哪一種方案更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(b>0)與一次函數(shù)y=ax+c的大致圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點,過O點作EF∥BC交AB、AC于E、F.試回答:
(1)圖中等腰三角形是 .猜想:EF與BE、CF之間的關(guān)系是 .理由:
(2)如圖②,若AB≠AC,圖中等腰三角形是 .在第(1)問中EF與BE、CF間的關(guān)系還存在嗎?
(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過O點作OE∥BC交AB于E,交AC于F.這時圖中還有等腰三角形嗎?EF與BE、CF關(guān)系又如何?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,點D、E分別是邊AB、AC的中點,將△ADE繞點E旋轉(zhuǎn)180°得△CFE,則四邊形ADCF一定是( )
A.矩形
B.菱形
C.正方形
D.梯形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形紙片ABCD沿EF折疊,使點B落在邊AD上的點B′處,點A落在點A′處;
(1)求證:B′E=BF;
(2)設(shè)AE=a,AB=b,BF=c,試猜想a,b,c之間的一種關(guān)系,并給予證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com