精英家教網 > 初中數學 > 題目詳情

如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點C與點O恰好重合,則∠OEC為  度.

考點:

線段垂直平分線的性質;等腰三角形的性質;翻折變換(折疊問題).

分析:

連接OB、OC,根據角平分線的定義求出∠BAO,根據等腰三角形兩底角相等求出∠ABC,再根據線段垂直平分線上的點到線段兩端點的距離相等可得OA=OB,根據等邊對等角可得∠ABO=∠BAO,再求出∠OBC,然后判斷出點O是△ABC的外心,根據三角形外心的性質可得OB=OC,再根據等邊對等角求出∠OCB=∠OBC,根據翻折的性質可得OE=CE,然后根據等邊對等角求出∠COE,再利用三角形的內角和定理列式計算即可得解.

解答:

解:如圖,連接OB、OC,

∵∠BAC=54°,AO為∠BAC的平分線,

∴∠BAO=∠BAC=×54°=27°,

又∵AB=AC,

∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,

∵DO是AB的垂直平分線,

∴OA=OB,

∴∠ABO=∠BAO=27°,

∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,

∵DO是AB的垂直平分線,AO為∠BAC的平分線,

∴點O是△ABC的外心,

∴OB=OC,

∴∠OCB=∠OBC=36°,

∵將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點C與點O恰好重合,

∴OE=CE,

∴∠COE=∠OCB=36°,

在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.

故答案為:108.

點評:

本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質,等腰三角形三線合一的性質,等邊對等角的性質,以及翻折變換的性質,綜合性較強,難度較大,作輔助線,構造出等腰三角形是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數;
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案