【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點,BD是對角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,請證明四邊形BEDF是菱形.
【答案】(1)見解析;(2)見解析.
【解析】(1)由平行四邊形性質(zhì)得AD=BC,AB=CD,∠A=∠C,再由E、F分別為邊AB、CD的中點,證AE=CF,根據(jù)SAS證△ADE≌△CBF.
(2)由DF和BE平行且相等,證四邊形EBFD是平行四邊形,再根據(jù)直角三角形斜邊上的中線等于斜邊一半,可得BF=DF,所以四邊形BEDF是菱形.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分別為邊AB、CD的中點,
∴AE= AB,CF= CD,
∴AE=CF,
在△ADE和△CBF中,
∵ ,
∴△ADE≌△CBF(SAS).
(2)證明:∵E、F分別為邊AB、CD的中點,
∴DF= DC,BE=AB,
又∵在ABCD中,AB∥CD,AB=CD,
∴DF∥BE,DF=BE,
∴四邊形DEBF為平行四邊形,
∵DB⊥BC,
∴∠DBC=90°,
∴△DBC為直角三角形,
又∵F為邊DC的中點,
∴BF= DC=DF,
又∵四邊形DEBF為平行四邊形,
∴四邊形DEBF是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 已知:如圖,A(-2,1)B(-3,-2),C(1,-2)把△AEC向上平移3個單位長度,再向右平移2個單位長度,得到△A'B'C'.
(1)畫出△A'B'C';
(2)若點P(m,n)是△ABC邊上的點,經(jīng)上述平移后,點P的對應(yīng)點為P',寫出點P'的坐標(biāo)為______;
(3)連接AA',CC',求出四邊形A'ACC'的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC⊥BC,DC⊥EC,AC=BC,DC=EC,圖中AE、BD有怎樣的關(guān)系(數(shù)量關(guān)系和位置關(guān)系)?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某社區(qū)20~60歲居民最喜歡的支付方式,某興趣小組對社區(qū)內(nèi)該年齡段的部分居民展開了隨機問卷調(diào)查(每人只能選擇其中一項),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:
(1)求參與問卷調(diào)查的總?cè)藬?shù);
(2)補全條形統(tǒng)計圖;
(3)該社區(qū)參與問卷調(diào)查人中,用微信支付方式的哪個年齡段人數(shù)多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)學(xué)習(xí)網(wǎng)站為吸引更多人注冊加入,舉行了一個為期5天的推廣活動,在活動期間,加入該網(wǎng)站的人數(shù)變化情況如下表所示:
時間 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
新加入人數(shù)(人) | 153 | 550 | 653 | b | 725 |
累計總?cè)藬?shù)(人) | 3353 | 3903 | a | 5156 | 5881 |
(1)表格中a= ,b= ;
(2)請把下面的條形統(tǒng)計圖補充完整;
(3)根據(jù)以上信息,下列說法正確的是 (只要填寫正確說法前的序號).
①在活動之前,該網(wǎng)站已有3200人加入;
②在活動期間,每天新加入人數(shù)逐天遞增;
③在活動期間,該網(wǎng)站新加入的總?cè)藬?shù)為2528人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】省城太原某大型超市計劃在12月23日推出“十周年”店慶促銷活動,該超市為本次促銷活動設(shè)計了兩種促銷方案.方案一:全場商品全部打8.5折;方案二:商品總價不超過200元時,不打折,超過200元的部分打7折.小穎的爸爸媽媽準(zhǔn)備在該超市促銷活動期間去購物.
(1)小穎的爸爸媽媽購買的商品總價為元(),按方案一應(yīng)該支付 元;按方案二應(yīng)該支付 元;(用含的代數(shù)式表示)
(2)若小穎的爸爸媽媽購買的商品總價為300元,請你幫助小穎計算一下,按哪種方案支付更劃算;
(3)若小穎的爸爸媽媽購買的商品總價為500元,請你幫助小穎計算一下,按哪種方案支付更劃算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知點C在線段AB上,AC=6cm ,且BC=4cm,M、N分別是AC、BC的中點,求線段 MN 的的長度.
(2)在(1)中,如果AC=acm,BC=bcm ,其他條件不變,你能猜出MN的長度嗎? 如果可以,請證明你所得出的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦經(jīng)銷商計劃購進一批電腦機箱和液晶顯示器,若購電腦機箱10臺和液液晶顯示器8臺,共需要資金7000元;若購進電腦機箱2臺和液示器5臺,共需要資金4120元.
(1)每臺電腦機箱、液晶顯示器的進價各是多少元?
(2)該經(jīng)銷商購進這兩種商品共50臺,而可用于購買這兩種商品的資金不超過22240元.根據(jù)市場行情,銷售電腦機箱、液晶顯示器一臺分別可獲利10元和160元.該經(jīng)銷商希望銷售完這兩種商品,所獲利潤不少于4100元.試問:該經(jīng)銷商有哪幾種進貨方案?哪種方案獲利最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com