精英家教網 > 初中數學 > 題目詳情
已知四邊形ABCD的對角線AC與BD交于點O,給出下列四個論斷:
①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.
請你從中選擇兩個論斷作為條件,以“四邊形ABCD為平行四邊形”作為結論,完成下列各題:
①構造一個真命題,畫圖并給出證明;
②構造一個假命題,舉反例加以說明.
【答案】分析:如果①②結合,那么這些線段所在的兩個三角形是SSA,不一定全等,那么就不能得到相等的對邊平行;如果①③結合,和①②結合的情況相同;如果①④結合,由對邊平行可得到兩對內錯角相等,那么AD,BC所在的三角形全等,也得到平行的對邊也相等,那么是平行四邊形;最易舉出反例的是②④,它有可能是等腰梯形.
解答:解:(1)①④為論斷時:
∵AD∥BC,
∴∠DAC=∠BCA,∠ADB=∠DBC.
又∵OA=OC,
∴△AOD≌△COB.
∴AD=BC.
∴四邊形ABCD為平行四邊形.

(2)②④為論斷時,此時一組對邊平行,另一組對邊相等,可以構成等腰梯形.
點評:本題主要考查平行四邊形的判定,學生注意常用等腰梯形做反例來推翻不是平行四邊形的判斷.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知四邊形ABCD的外接圓⊙O的半徑為2,對角線AC與BD的交點為E,AE=EC,AB=
2
AE,且BD=2
3
,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

11、已知四邊形ABCD的四邊分別有a,b,c,d.其中a,c是對邊且a2+b2+c2+d2=2ac+2bd,則四邊形是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,△ABC與△ADC關于直線AC對稱,連接BD,若已知四邊形ABCD的面積是125,AC=25,則BD的長為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知四邊形ABCD的對角線互相垂直,若適當添加一個條件,就能判定該四邊形是菱形.那么這個條件可以是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知四邊形ABCD的四個頂點的坐標分別為A(0,0),B(9,0),C(7,5),D(2,7),將該四邊形各頂點的橫坐標都增加2,縱坐標都增加3,其面積為( 。

查看答案和解析>>

同步練習冊答案