精英家教網 > 初中數學 > 題目詳情
某服裝店以每件40元的價格購進一批襯衫,在試銷過程中發(fā)現:每月銷售量y(件)與銷售單價x(x為正整數)(元)之間符合一次函數關系,當銷售單價為55元時,月銷售量為140件;當銷售單價為70元時,月銷售量為80件.
(1)求y與x的函數關系式;
(2)如果每銷售一件襯衫需支出各種費用1元,設服裝店每月銷售該種襯衫獲利為w元,求w與x之間的函數關系式,并求出銷售單價定為多少元時,商場獲利最大,最大利潤是多少元?
【答案】分析:(1)設y與x的函數關系式y(tǒng)=kx+b,根據售價與銷量之間的數量關系建立方程組,求出其解即可;
(2)根據利潤=(售價-進價)×數量就可以表示出W,
解答:解:(1)設y與x的函數關系式y(tǒng)=kx+b,由題意,得
,
解得:,
∴y與x的函數關系式為:y=-4x+360;

(2)由題意,得
W=y(x-40)-y
=(-4x+360)(x-40)-(-4x+360)
=-4x2+160x+360x-14400+4x-360
=-4x2+524x-14760,
∴w與x之間的函數關系式為:W=-4x2+524x-14760,
∴W=-4(x2-131x)-14760=-4(x-65.5)2+2401,
當x=65.5時,最大利潤為2401元,
∵x為整數,
∴x=66或65時,W=2400元.
∴x=65或66時,W最大=2400元.
點評:本題考查了待定系數法求一次函數和二次函數的解析式的運用,二次函數的頂點式的運用,解答時求出函數的解析式是關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•撫順)某服裝店以每件40元的價格購進一批襯衫,在試銷過程中發(fā)現:每月銷售量y(件)與銷售單價x(x為正整數)(元)之間符合一次函數關系,當銷售單價為55元時,月銷售量為140件;當銷售單價為70元時,月銷售量為80件.
(1)求y與x的函數關系式;
(2)如果每銷售一件襯衫需支出各種費用1元,設服裝店每月銷售該種襯衫獲利為w元,求w與x之間的函數關系式,并求出銷售單價定為多少元時,商場獲利最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數學 來源:2013年初中畢業(yè)升學考試(遼寧撫順卷)數學(解析版) 題型:解答題

某服裝店以每件40元的價格購進一批襯衫,在試銷過程中發(fā)現:每月銷售量y(件)與銷售單價x(x為正整數)(元)之間符合一次函數關系,當銷售單價為55元時,月銷售量為140件;當銷售單價

為70元時,月銷售量為80件.

(1)求y與x的函數關系式;

(2)如果每銷售一件襯衫需支出各種費用1元,設服裝店每月銷售該種襯衫獲利為w元,求w與x之間的函數關系式,并求出銷售單價定為多少元時,商場獲利最大,最大利潤是多少元?

 

查看答案和解析>>

科目:初中數學 來源:撫順 題型:解答題

某服裝店以每件40元的價格購進一批襯衫,在試銷過程中發(fā)現:每月銷售量y(件)與銷售單價x(x為正整數)(元)之間符合一次函數關系,當銷售單價為55元時,月銷售量為140件;當銷售單價為70元時,月銷售量為80件.
(1)求y與x的函數關系式;
(2)如果每銷售一件襯衫需支出各種費用1元,設服裝店每月銷售該種襯衫獲利為w元,求w與x之間的函數關系式,并求出銷售單價定為多少元時,商場獲利最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

某服裝店以每件40元的價格購進一批襯衫,在試銷過程中發(fā)現:每月銷售量y(件)與銷售單價x(x為正整數)(元)之間符合一次函數關系,當銷售單價為55元時,月銷售量為140件;當銷售單價為70元時,月銷售量為80件.

(1)求y與x的函數關系式;

(2)如果每銷售一件襯衫需支出各種費用1元,設服裝店每月銷售該種襯衫獲利為w元,求w與x之間的函數關系式,并求出銷售單價定為多少元時,商場獲利最大,最大利潤是多少元?

查看答案和解析>>

同步練習冊答案