如圖,在矩形紙片ABCD中,AB=3,BC=4.把△BCD沿對(duì)角線BD折疊,使點(diǎn)C落在E處,BE交AD于點(diǎn)F;

(1)求證:AF=EF;
(2)求tan∠ABF的值;
(3)連接AC交BE于點(diǎn)G, 求AG的長(zhǎng).
(1)證明△AFD≌△EFD得AF=EF(2)(3)    

試題分析:(1)證明:∵ △EBD是由△CBD折疊而得,
∴ED=DC,BE=BC;          1分
∵四邊形ABCD是矩形,∴AB=CD,∠BAD=∠BED=90°
∴ED=AB,而∠EFD=∠AFD
∴△AFD≌△EFD
∴AF=EF                    
(2)設(shè)AF=
∵AB=3,BC=BE=4,AF=EF
∴  BF=4-
∵∠BAF=90°

 ∴           
∴tan∠ABF=          
(3)∵四邊形ABCD是矩形,
∴∠BAD=90°,AD∥BC;
∴AC=,
∴ΔAGF∽ΔCGB               

設(shè)AG=,則CG=5-,
                
解之得:,即AG=    
點(diǎn)評(píng):本題考查全等三角形、三角函數(shù),掌握三角函數(shù)的定義,會(huì)利用三角函數(shù)的定義求解,熟悉全等三角形的判定方法
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

閱讀:
如圖①,已知:正方形ABCD,面積為a,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接AG、BH、CE、DF,求四邊形MNPQ的面積.

小明提出了如下的解決辦法:如圖②,分別將△AMH、△BNE、△CPF、△DQG分割并拼補(bǔ)成一個(gè)與正方形ABCD面積相等的新圖形.
請(qǐng)你參考小明同學(xué)解決問(wèn)題的方法,利用圖形變換解決下列問(wèn)題:
如圖③,在正方形ABCD中,E1、E2、E3、E4分別為AB、BC、CA、DA的中點(diǎn),P 1、P2, Q1、Q2,M 1、M2,N1、N2分別為AB、BC、CA、DA的三等分點(diǎn).
(1)在圖③中畫(huà)出一個(gè)和正方形ABCD面積相等的新圖形,并用陰影表示(保留畫(huà)圖痕跡);
(2)圖③中四邊形P4Q4M4N4的面積為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在菱形ABCD中,AC、BD是對(duì)角線,若∠BAC=50°,則∠ABC等于 ( )
A.40°            B.50°         C.80°          D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列正方形的性質(zhì)中,菱形(非正方形)不具有的性質(zhì)是
A.四邊相等B.對(duì)角線相等
C.對(duì)角線平分一組對(duì)角D.對(duì)角線互相平分且垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知菱形ABCD的對(duì)角線AC.BD的長(zhǎng)分別為6cm、8cm,AE⊥BC于點(diǎn)E,則AE的長(zhǎng)是( 。

A.     B.       C.            D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知、分別是平行四邊形的邊、上的兩點(diǎn),且

(1)求證:;
(2)判定四邊形是否是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

相鄰兩邊長(zhǎng)分別為2和3的平行四邊形,若邊長(zhǎng)保持不變,其內(nèi)角大小變化,則它可以變?yōu)椋?nbsp;  )
A.矩形B.菱形C.正方形D.矩形或菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長(zhǎng);
(2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過(guò)程中,
①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
②若點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,□ABCD的周長(zhǎng)是28 cm,△ABC的周長(zhǎng)是22 cm,則AC的長(zhǎng)為
A.6 cmB.12 cmC.4 cmD.8 cm

查看答案和解析>>

同步練習(xí)冊(cè)答案