【題目】有形狀、大小和質(zhì)地都完全相同的四張卡片A、B、C、D,正面上分別寫有四個實數(shù)、、,將這四張卡片背面朝上洗勻,從中隨機(jī)抽取一張(不放回),接著再隨機(jī)抽取一張.

1)用畫樹形圖或列表法表示抽取兩張卡片可能出現(xiàn)的所有情況卡片(可用A、B、C、D表示);

2)求抽到的兩個數(shù)都是無理數(shù)的概率.

【答案】1)見解析;(2)列表見解析,

【解析】

1)根據(jù)題意,作出樹狀圖或表格,列出所有的情況即可得答案,

2)根據(jù)(1)的樹狀圖,分析可得情況的總數(shù)目與都是偶數(shù)的情況數(shù)目,進(jìn)而計算可得答案.

解:(1)樹形圖如下:

共有12種等可能結(jié)果

2)列表法如下:

第一次

第二次

A

B

C

D

A

B,A

C,A

DA

B

A,B

C,B

D,B

C

(A,C)

B,C

D,C

D

(A,D)

BD

C,D

2)根據(jù)(1)的樹狀圖可得,卡片B、C上的都是無理數(shù),則兩次都抽到無理數(shù)的結(jié)果有兩種.

所以P(抽到的兩個數(shù)都是無理數(shù))==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,點A與原點重合,點By軸的正半軸上,點Dx軸的負(fù)半軸上,將正方形ABCD繞點A逆時針旋轉(zhuǎn)30°至正方形AB'C′D′的位置,B'C′CD相交于點M,則點M的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某花店準(zhǔn)備購進(jìn)甲、乙兩種花卉,若購進(jìn)甲種花卉20盆,乙種花卉50盆,需要720元;若購進(jìn)甲種花卉40盆,乙種花卉30盆,需要880元.

1)求購進(jìn)甲、乙兩種花卉,每盆各需多少元?

2)該花店銷售甲種花卉每盆可獲利6元,銷售乙種花卉每盆可獲利1元,現(xiàn)該花店準(zhǔn)備拿出800元全部用來購進(jìn)這兩種花卉,考慮到顧客需求,要求購進(jìn)乙種花卉的數(shù)量不少于甲種花卉數(shù)量的6倍,且不超過甲種花卉數(shù)量的8倍,那么該花店共有幾種購進(jìn)方案?在所有的購進(jìn)方案中,哪種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB=AC.過點AAD//BC,與的平分線交于點DBDAC交于點E,與⊙O交于點F

1)求證:AD是⊙O的切線

2)求證:

3)若BC=2,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師家距學(xué)校1900米,某天他步行去上班,走到路程的一半時發(fā)現(xiàn)忘帶手機(jī),此時離上班時間還有23分鐘,于是他立刻步行回家取手機(jī),隨后騎電瓶車返回學(xué)校.已知李老師騎電瓶車到學(xué)校比他步行到學(xué)校少用20分鐘,且騎電瓶車的平均速度是步行速度的5倍,李老師到家開門、取手機(jī)、啟動電瓶車等共用4分鐘.

(1)求李老師步行的平均速度;

(2)請你判斷李老師能否按時上班,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是△ABC的外接圓,F,D的中點,EBA延長線上一點,,則∠CAD等于(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寒梅中學(xué)為了豐富學(xué)生的課余生活,計劃購買圍棋和中國象棋供棋類興趣小組活動使用,若購買3副圍棋和5副中國象棋需用98元;若購買8副圍棋和3副中國象棋需用158元;(1)求每副圍棋和每副中國象棋各多少元;(2)寒梅中學(xué)決定購買圍棋和中國象棋共40副,總費用不超過550元,那么寒梅中學(xué)最多可以購買多少副圍棋?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABHK是邊長為6的正方形,點C、D在邊AB上,且AC=DB=1,點P是線段CD上的動點,分別以AP、PB為邊在線段AB的同側(cè)作正方形AMNP和正方形BRQP,E、F分別為MNQR的中點,連接EF,設(shè)EF的中點為G,則當(dāng)點P從點C運動到點D時,點G移動的路徑長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC是等邊三角形,點D、E分別在AC、BC上,且CD=BE,

(1)求證:ABE≌△BCD

(2)求出AFB的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案