【題目】下列命題中錯誤的是( )
A. 圓柱的軸截面是過母線的截面中面積最大的一個
B. 圓錐的軸截面是所有過頂點的截面中面積最大的一個
C. 圓臺的所有平行于底面的截面都是圓
D. 圓錐所有的軸截面是全等的等腰三角形
【答案】B
【解析】
由圓柱的結(jié)構(gòu)特征我們可以判斷A答案的正誤;由過圓錐頂點的截面面積等于
我們易判斷B答案的真假;由圓臺的結(jié)構(gòu)特征,我們易得到C的對錯,而由圓錐軸截面的特征,我們易得到D的正誤.
∵過母線的截面面積等于母線長乘底面弦長
在底面上,最長的弦為過底面圓心的直徑
故A圓柱的軸截面是過母線的截面中面積最大的一個正確;
∵過圓錐頂點的截面中面積等于 其中θ為兩條母線l的夾角
若軸截面的頂角為銳角或直角,則圓錐的軸截面是所有過頂點的截面中面積最大的一個
若軸截面的頂角為鈍角,則當時,過頂點的截面中面積最大,故B錯誤;
由圓臺的性質(zhì),我們易得圓臺的所有平行于底面的截面都是圓,故C正確;
而圓錐所有的軸截面的頂角相等且兩腰長均為母線長,故D正確.
故選:B
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點D是AB的中點,點E是AB邊上一點.
(1)直線BF垂直于直線CE于點F,交CD于點G(如圖1),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣x2+bx+c與x軸交于A(﹣3,0),B(1,0)兩點,與y軸交于點C.
(1)求該拋物線的解析式;
(2)在拋物線上求一點P,使S△PAB=S△ABC,寫出P點的坐標;
(3)在拋物線的對稱軸上是否存在點Q,使得△QBC的周長最?若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等邊△ABC中AD⊥BC,AD=12,若點P在線段AD上運動,當AP+BP的值最小時,AP的長為( ).
A.4B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2+bx經(jīng)過點A(2,4)和點B(6,0).
(1)求這條拋物線所對應(yīng)的二次函數(shù)的解析式;
(2)直接寫出它的開口方向、頂點坐標;
(3)點(x1,y1),(x2,y2)均在此拋物線上,若x1>x2>4,則y1 ________ y2(填“>”“=”或“<”).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于多項式Ax2bxc(b、c為常數(shù)),作如下探究:
(1)不論x取何值,A都是非負數(shù),求b與c滿足的條件;
(2)若A是完全平方式,
①當c=9時,b= ;當b=3時,c= ;
②若多項式Bx2dxc與A有公因式,求d的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是2018年三月份某居民小區(qū)隨機抽取20戶居民的用水情況:
月用水量/噸 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
戶數(shù) | 2 | 4 | m | 4 | 3 | 0 | 1 |
(1)求出m= ,補充畫出這20戶家庭三月份用電量的條形統(tǒng)計圖;
(2)據(jù)上表中有關(guān)信息,計算或找出下表中的統(tǒng)計量,并將結(jié)果填入表中:
統(tǒng)計量名稱 | 眾數(shù) | 中位數(shù) | 平均數(shù) |
數(shù)據(jù) |
|
|
|
(3)為了倡導(dǎo)“節(jié)約用水,綠色環(huán)保”的意識,江贛市自來水公司實行“梯級用水、分類計費”,價格表如下:
月用水梯級標準 | Ⅰ級(30噸以內(nèi)) | Ⅱ級(超過30噸的部分) |
單價(元/噸) | 2.4 | 4 |
如果該小區(qū)有500戶家庭,根據(jù)以上數(shù)據(jù),請估算該小區(qū)三月份有多少戶家庭達到Ⅱ級標準?并估算這些Ⅱ級用水戶的總水費是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,有理數(shù)包括整數(shù)、有限小數(shù)和無限循環(huán)小數(shù),事實上,所有的有理數(shù)都可以化為分數(shù)形式(整數(shù)可看作分母為1的分數(shù)),那么無限循環(huán)小數(shù)如何表示為分數(shù)形式呢?請看以下示例:
例:將化為分數(shù)形式
由于=0.777…,設(shè)x=0.777…①
則10x=7.777…②
②﹣①得9x=7,解得x=,于是得=.
同理可得=,=1+=1+,
根據(jù)以上閱讀,回答下列問題:(以下計算結(jié)果均用最簡分數(shù)表示)
(基礎(chǔ)訓練)
(1)= ,= ;
(2)將化為分數(shù)形式,寫出推導(dǎo)過程;
(能力提升)
(3)= ,= ;
(注:=0.315315…,=2.01818…)
(探索發(fā)現(xiàn))
(4)①試比較與1的大。 1(填“>”、“<”或“=”)
②若已知=,則= .
(注:=0.285714285714…)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,∠BAC與∠ACD的角平分線交于點E,且AC=13,AE=5,則AB與CD之間的距離是( )
A.7B.8C.D.9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com