【題目】勾股定理a2+b2=c2本身就是一個關于a,b,c的方程,滿足這個方程的正整數(shù)解(a,b,c)通常叫做勾股數(shù)組.畢達哥拉斯學派提出了一個構造勾股數(shù)組的公式,根據(jù)該公式可以構造出如下勾股數(shù)組:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股數(shù)組可以發(fā)現(xiàn),4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面規(guī)律,第5個勾股數(shù)組為_____.

【答案】(11,60,61)

【解析】

由勾股數(shù)組:(3,4,5),(5,1213),(7,24,25)…4=1×3+1),12=2×5+1),24=3×7+1),…可得第5組勾股數(shù)中間的數(shù)為5×11+1)=60,進而得出(1160,61).

由勾股數(shù)組:(3,4,5),(5,12,13),(7,24,25)…4=1×3+1),12=2×5+1),24=3×7+1),…可得

4組勾股數(shù)中間的數(shù)為4×9+1)=40,即勾股數(shù)為(9,40,41);

5組勾股數(shù)中間的數(shù)為5×11+1)=60,即(11,6061).

故答案為:11,60,61).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC、BD相交于點F,點E在BD上,且
(1)試問:∠BAE與∠CAD相等嗎?為什么?
(2)試判斷△ABE與△ACD是否相似?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把ABC紙片沿DE折疊,當點A落在四邊形BCDE內部時,∠A與∠1、2之間的數(shù)量關系為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經過A(﹣1,0),B(5,0),C(0,- )三點.

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)yl=x(x≥0), (x>0)的圖象如圖所示,則結論: ①兩函數(shù)圖象的交點A的坐標為(3,3);
②當x>3時,y2>y1;
③當x=1時,BC=8;
④當x逐漸增大時,yl隨著x的增大而增大,y2隨著x的增大而減。
其中正確結論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,若“摸出的球是黑球”為必然事件,求m的值;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于 ,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在第1ABA1,B=40°BAA1=∠BA1A,A1B上取一點C,延長AA1A2,使得在第2A1CA2,A1CA2=∠A1 A2C;A2C上取一點D延長A1A2A3,使得在第3A2DA3A2DA3=∠A2 A3D;,按此做法進行下去3個三角形中以A3為頂點的內角的度數(shù)為 ;n個三角形中以An為頂點的內角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是四邊形ABCD外接圓上任意一點,且不與四邊形頂點重合,若AD是⊙O的直徑,AB=BC=CD.連接PA,PB,PC,若PA=a,則點A到PB和PC的距離之和AE+AF=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,點M為射線AE上任意一點(不與A重合),連接CM,將線段CM繞點C按順時針方向旋轉90°得到線段CN,直線NB分別交直線CM、射線AE于點F、D.

(1)直接寫出∠NDE的度數(shù).
(2)如圖2、圖3,當∠EAC為銳角或鈍角時,其他條件不變,(1)中的結論是否發(fā)生變化?如果不變,選取其中一種情況加以證明;如果變化,請說明理由.

(3)如圖4,若∠EAC=15°,∠ACM=60°,直線CM與AB交于G,BD=,其他條件不變,求線段AM的長.

查看答案和解析>>

同步練習冊答案