【題目】如圖,已知等腰Rt△ABC,∠ACB=90°,CA=CB,以BC為邊向外作等邊△CBA,連接AD,過點C作∠ACB的角平分線與AD交于點E,連接BE.

(1)若AE=2,求CE的長度;
(2)以AB為邊向下作△AFB,∠AFB=60°,連接FE,求證:FA+FB= FE.

【答案】
(1)解:延長CE交AB于G,

∵△BAC是等腰直角三角形,CE平分∠ACB,

∴CG⊥AB,

∴∠AGC=90°,

∵CA=CB,∠ACB=90°,

∴∠CAB=45°,

∴△CAG是等腰直角三角形,

∵△BCD是等邊三角形,

∴BC=CD=AC,∠BCD=60°,

∴∠CAD=∠CDA,

∴∠ACD=∠ACB+∠BCD=150°,

∴∠CAD=∠CDA=15°,

∴∠EAB=∠CAB﹣∠CAD=30°,

在Rt△AEG中,∠EAG=30°,AE=2,

∴AE= ,EG=1,

∵CG=AG= ,

∴CE=CG﹣EG= ﹣1.


(2)解:延長FB到H,使得BH=AF,連接EH.作EI⊥BF于I.

由(1)可知:AC=BC,CE平分∠ACB,

∴∠ACE=∠BCE,

∵CE=CE,

∴△ACE≌△BCE,

∴AE=BE,

∴∠EAB=∠EBC=30°,

在△AFB中,∠AFB=60°,

∴∠FAB+∠FBA=120°,

∴∠FAE=∠EAB+∠FAB=30°+∠FAB,

∠EBH=180°﹣∠EBA﹣∠ABF=150°﹣(120°﹣∠ABF)=30°+∠FAB,

∴∠EBH=∠FAE,

∴△AFE≌△BHE,

∴∠AFE=∠BHE,EF=EH,

∴∠EFB=∠EBH=∠AFE=30°,

∵EI⊥FH,

∴EI=IH,

在Rt△FEI中,∠EFI=30°,

∴FI= FE,

∴FH=BH+FB= FE,

∴FA+FB= FE.


【解析】(1)延長CE交AB于G,首先判斷出△CAG是等腰直角三角形,然后找到∠EAB=∠CAB﹣∠CAD=30°,分別求出CG,EG即可解決問題;
(2)延長FB到H,使得BH=AF,連接EH.作EI⊥BF于I.由△ACE≌△BCE,推出AE=BE,推出∠EAB=∠EBC=30°,由△AFE≌△BHE,推出∠AFE=∠BHE,EF=EH,可得∠EFB=∠EBH=∠AFE=30°,又EI⊥FH,故在Rt△FEI中,∠EFI=30°,從而得出FI= FE,可得FA+FB= FE.
【考點精析】本題主要考查了等腰直角三角形和等邊三角形的性質(zhì)的相關(guān)知識點,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;等邊三角形的三個角都相等并且每個角都是60°才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線ONOE、OS、OW分別表示從點O出發(fā)北、東、南、西四個方向,點A在點O的北偏東45°方向,點B在點O的北偏西30°方向.

1)畫出射線OB,若∠BOC與∠AOB互余,請在圖1或備用圖中畫出∠BOC;

2)若OP是∠AOC的角平分線,直接寫出∠AOP的度數(shù)(不需要計算過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,E為BC上一點,BE=2CE,連接DE,F(xiàn)為DE中點,以DF為直角邊作等腰Rt△DFG,連接BG,將△DFG繞點D順時針旋轉(zhuǎn)得△DF′G′,G′恰好落在BG的延長線上,連接F′G,若BG=2 ,則SGF′G′=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明對我校七年級(1)班喜歡什么球類運動的調(diào)查,下列圖形中的左圖是小明對所調(diào)查結(jié)果的條形統(tǒng)計圖.

(1)問七年級(1)班共有多少學(xué)生?

(2)請你改用扇形統(tǒng)計圖來表示我校七年級(1)班同學(xué)喜歡的球類運動.

(3)從統(tǒng)計圖中你可以獲得哪些信息?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角梯形ABCD中,AD∥BCB90°,AD24 ㎝,BC26㎝,動點P從點A開始沿AD邊以每秒1㎝的速度向D點運動,動點Q從點C開始沿CB邊以每秒3㎝的速度向B運動,P,Q分別從AC同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設(shè)運動時間為t s

1t為何值時,四邊形PQCD為平行四邊形?

2t為何值時,四邊形PQCD為等腰梯形?

3t為何值時,四邊形ABQP為矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,小明一家到某拓展基地訓(xùn)練,小明和他媽媽坐公交車先出發(fā),爸爸在家整理物品,隨后爸爸自駕車沿著相同的道路后出發(fā)他爸爸到拓展基地后,發(fā)現(xiàn)忘了東西在家里,于是立即返回家里取,取到東西后又馬上駕車前往拓展基地如圖是他們離家的距離skm與小明離家的時問t的關(guān)系圖.

(1)請根據(jù)圖象,回答問題:

①圖中點A表示的意義是 .

②當爸爸第一次到達度假村后,小明離度假村的距離是______ km;

(2)爸爸在返回家的途中與小明相遇時,小明離家的距離是多少?

(3)整個運動過程中(雙方全部到達會合時,視為運動結(jié)束),請直接寫出小明與爸爸相距24kmt的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,圓的周長為4個單位長度在圓周的4等分點處標上字母AB,C,D,先將圓周上的字母A對應(yīng)的點與數(shù)軸上的原點重合,再將圓沿著數(shù)軸向右滾動,那么數(shù)軸上的1949所對應(yīng)的點與圓周上字母  所對應(yīng)的點重合.

A. AB. BC. CD. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,現(xiàn)將一直角三角形放入圖中,其中,于點于點

1)當所放位置如圖①所示時,則的數(shù)量關(guān)系為_______;請說明理由.

2)當所放位置如圖②所示時,的數(shù)量關(guān)系為________;

3)在(2)的條件下,若交于點0,且,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】清清從家步行到公交車站臺,等公交車去學(xué)校.下公交車后又步行了一段路程才到學(xué)校. 圖中的折線表示清清的行程s()與所花時間t ()之間的函數(shù)關(guān)系. 下列說法錯誤的是(

A. 清清等公交車時間為3分鐘 B. 清清步行的速度是80/

C. 公交車的速度是500/ D. 清清全程的平均速度為290/

查看答案和解析>>

同步練習冊答案