【題目】在平面直角坐標(biāo)系中,設(shè)二次函數(shù)y1=x2+bx+a,y2=ax2+bx+1(a,b是實(shí)數(shù),a≠0).
(1)若函數(shù)y1的對(duì)稱軸為直線x=3,且函數(shù)y1的圖象經(jīng)過(guò)點(diǎn)(a,b),求函數(shù)y1的表達(dá)式.
(2)若函數(shù)y1的圖象經(jīng)過(guò)點(diǎn)(r,0),其中r≠0,求證:函數(shù)y2的圖象經(jīng)過(guò)點(diǎn)(,0).
(3)設(shè)函數(shù)y1和函數(shù)y2的最小值分別為m和n,若m+n=0,求m,n的值.
【答案】(1)y1=x2﹣6x+2或y1=x2﹣6x+3;(2)見解析;(3)m=n=0.
【解析】
(1)利用待定系數(shù)法解決問(wèn)題即可.
(2)函數(shù)y1的圖象經(jīng)過(guò)點(diǎn)(r,0),其中r≠0,可得r2+br+a=0,推出1+=0,即a()2+b+1=0,推出是方程ax2+bx+1的根,可得結(jié)論.
(3)由題意a>0,可得m=,n=,根據(jù)m+n=0,構(gòu)建方程可得結(jié)論.
解:(1)由題意,得到﹣=3,解得b=﹣6,
∵函數(shù)y1的圖象經(jīng)過(guò)(a,﹣6),
∴a2﹣6a+a=﹣6,
解得a=2或3,
∴函數(shù)y1=x2﹣6x+2或y1=x2﹣6x+3.
(2)∵函數(shù)y1的圖象經(jīng)過(guò)點(diǎn)(r,0),其中r≠0,
∴r2+br+a=0,
∴1+=0,
即a()2+b+1=0,
∴是方程ax2+bx+1的根,
即函數(shù)y2的圖象經(jīng)過(guò)點(diǎn)(,0).
(3)由題意a>0,∴m=,n=,
∵m+n=0,
∴+0,
∴(4a﹣b2)(a+1)=0,
∵a+1>0,
∴4a﹣b2=0,
∴m=n=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,Rt△OAB的直角頂點(diǎn)B在x軸的正半軸上,點(diǎn)A在第一象限,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)OA的中點(diǎn)C.交AB于點(diǎn)D,連結(jié)CD.若△ACD的面積是2,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠C=90°,DE,BF分別平分∠ADC,∠ABC,并交線段AB,CD于點(diǎn)E,F(點(diǎn)E,B不重合).在線段BF上取點(diǎn)M,N(點(diǎn)M在BN之間),使BM=2FN.當(dāng)點(diǎn)P從點(diǎn)D勻速運(yùn)動(dòng)到點(diǎn)E時(shí),點(diǎn)Q恰好從點(diǎn)M勻速運(yùn)動(dòng)到點(diǎn)N.記QN=x,PD=y,已知,當(dāng)Q為BF中點(diǎn)時(shí),.
(1)判斷DE與BF的位置關(guān)系,并說(shuō)明理由;
(2)求DE,BF的長(zhǎng);
(3)若AD=6.①當(dāng)DP=DF時(shí),通過(guò)計(jì)算比較BE與BQ的大小關(guān)系;②連結(jié)PQ,當(dāng)PQ所在直線經(jīng)過(guò)四邊形ABCD的一個(gè)頂點(diǎn)時(shí),求所有滿足條件的x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,∠BAC=45°,AD⊥BC于點(diǎn)D,延長(zhǎng)AD交⊙O于點(diǎn)E,若BD=4,CD=1,則DE的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知函數(shù)y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正實(shí)數(shù),且滿足b2=ac.設(shè)函數(shù)y1,y2,y3的圖象與x軸的交點(diǎn)個(gè)數(shù)分別為M1,M2,M3,( )
A.若M1=2,M2=2,則M3=0B.若M1=1,M2=0,則M3=0
C.若M1=0,M2=2,則M3=0D.若M1=0,M2=0,則M3=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式變得更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問(wèn)卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息回答下列問(wèn)題:
(1)本次調(diào)查共調(diào)查了______名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為______;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校共有1500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用“微信”溝通的學(xué)生有多少名?
(4)某天甲、乙兩名同學(xué)都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對(duì)方聯(lián)系,請(qǐng)用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了培養(yǎng)學(xué)生數(shù)學(xué)學(xué)習(xí)興趣,某校七年級(jí)準(zhǔn)備開設(shè)“神奇魔方”、“魅力數(shù)獨(dú)”、“數(shù)學(xué)故事”、“趣題巧解”四門選修課(每位學(xué)生必須且只選其中一門).學(xué)校對(duì)七年級(jí)部分學(xué)生進(jìn)行選課調(diào)查,得到如圖所示的統(tǒng)計(jì)圖.
(1)根據(jù)統(tǒng)計(jì)圖,本次選課共調(diào)查了 名學(xué)生;
(2)若該校七年級(jí)有960名學(xué)生,請(qǐng)計(jì)算出選“神奇魔方”的人數(shù);
(3)學(xué)校將選“神奇魔方”的學(xué)生分成人數(shù)相等的A、B、C三個(gè)班,小聰、小慧都選擇了“神奇魔方”.已知小聰不在A班,用列表法或畫樹狀圖法,求小聰和小慧被分到同一個(gè)班的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,∠A=∠CBD.
(1)求證:BC是⊙O的切線.
(2)若∠C=35°,AB=6,求的長(zhǎng)(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),與y軸交于C(0,-2);直線經(jīng)過(guò)點(diǎn)A且與拋物線交于另一點(diǎn)B.
(1)直接寫出拋物線的解析式 ;
(2)如圖(1),點(diǎn)M是拋物線上A,B兩點(diǎn)間的任一動(dòng)點(diǎn),MN⊥AB于點(diǎn)N,試求出MN的最大值 ,并求出MN最大時(shí)點(diǎn)M的坐標(biāo);
(3)如圖(2),連接AC,已知點(diǎn)P的坐標(biāo)為(2,1),點(diǎn)Q為對(duì)稱軸左側(cè)的拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)Q作QF⊥x軸于點(diǎn)F,是否存在這樣的點(diǎn)Q,使得∠FQP=∠CAO.若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com