【題目】某市居民用電的電價實行階梯收費,收費標準如下表:

一戶居民每月用電量x()

電費價格(/)

0.48

0.53

0.78

七月份是用電高峰期,李叔計劃七月份電費支出不超過200元,則李叔家七月份最多可用電的度數(shù)是( ).

A. 100B. 400C. 396D. 397

【答案】C

【解析】

先判斷出電費是否超過400度,然后根據(jù)不等關系:七月份電費支出不超過200元,列不等式計算即可.

解:0.48×200+0.53×200
=96+106
=202(元),
故七月份電費支出不超過200元時電費不超過400度,
依題意有0.48×200+0.53x-200≤200,
解得x≤396
答:李叔家七月份最多可用電的度數(shù)是396
故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,以AB為直徑作⊙OBC于點D,EAC的中點,連接DE并延長交BA的延長線于點F

1)求證:DE是⊙O的切線;

2)若∠F=30°O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象上,點A是該圖象第一象限分支上的動點,連結AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,ACx軸交于點P,連結BP,在點A運動過程中,當BP平分∠ABC時,點A的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數(shù)y=的圖象于點B,AB=

(1)求反比例函數(shù)的解析式;

(2)若P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點,且x1<x2時,y1>y2,指出點P、Q各位于哪個象限?并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=k1x+bk1≠0)與雙曲線k2≠0)相交于A12)、Bm,﹣1)兩點.

1)求直線和雙曲線的解析式;

2)若A1x1,y1),A2x2y2),A3x3,y3)為雙曲線上的三點,且x10x2x3,請直接寫出y1,y2,y3的大小關系式;

3)觀察圖象,請直接寫出不等式k1x+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=mx2﹣7mx+3y軸交于點A,與x軸分別交于點B(1,0).點C(x2,0),過點A作直線ADx軸,與拋物線交于點D,在x軸上有一動點E(t,0),過點E作直線ly軸,與拋物線交于點P,與直線AD交于點Q.

(1)求拋物線的解析式及點C的坐標;

(2)當0t7時,求△APC面積的最大值;

(3)當t1時,是否存在點P,使以A、P、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形ABOC的兩邊在坐標軸上,OB=1,點A在函數(shù)y=﹣(x0)的圖象上,將此矩形向右平移3個單位長度到A1B1O1C1的位置,此時點A1在函數(shù)y=(x0)的圖象上,C1O1與此圖象交于點P,則點P的縱坐標是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點,連接EF,點P從點E出發(fā),沿EF方向勻速運動,速度為1cm/s,同時,點Q從點D出發(fā),沿DB方向勻速運動,速度為2cm/s,當點P停止運動時,點Q也停止運動.連接PQ,設運動時間為t(0<t<4)s,解答下列問題:

(1)求證:△BEF∽△DCB;

(2)當點Q在線段DF上運動時,若△PQF的面積為0.6cm2,求t的值;

(3)如圖2過點QQG⊥AB,垂足為G,當t為何值時,四邊形EPQG為矩形,請說明理由;

(4)當t為何值時,△PQF為等腰三角形?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1⊙O的半徑為rr0),若點P′在射線OP上,滿足OP′OP=r2,則稱點P′是點P關于⊙O反演點

如圖2,⊙O的半徑為4,點B⊙O上,∠BOA=60°,OA=8,若點A′B′分別是點A,B關于⊙O的反演點,求A′B′的長.

查看答案和解析>>

同步練習冊答案