【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元.銷售價為每千克60元時,一天能銷售80千克,經(jīng)市場調(diào)查,該商品每漲價1元,一天銷售量就減少2千克,設(shè)該商品的售價漲了x元,每天銷售該商品的總利潤為y元.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)當(dāng)x為多少時每天總利潤y最大,最大利潤是多少?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是矩形ABCD的邊上一動點,矩形兩邊長AB、BC長分別為15和20,那么P到矩形兩條對角線AC和BD的距離之和是( )
A.6B.12C.24D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整,并解決相關(guān)問題:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對應(yīng)值.
x | … | 0 | 1 | 2 | 3 | 4 | … | ||||||
y | … | 2 | 4 | 2 | m | … |
表中m的值為________________;
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點. 根據(jù)描出的點,畫出函數(shù)的大致圖象;
(4)結(jié)合函數(shù)圖象,請寫出函數(shù)的一條性質(zhì):______________________.
(5)解決問題:如果函數(shù)與直線y=a的交點有2個,那么a的取值范圍是______________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+4與x軸交于點C,與y軸交于點B,拋物線y=ax2+x+c經(jīng)過B、C兩點.
(1)求拋物線的解析式;
(2)如圖,點E是直線BC上方拋物線上的一動點,當(dāng)△BEC面積最大時,請求出點E的坐標(biāo);
(3)在(2)的結(jié)論下,過點E作y軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】創(chuàng)客聯(lián)盟的隊員想用3D打印完成一幅邊長為4米的正方形作品ABCD,設(shè)計圖案如圖所示(四周陰影是四個全等的矩形,用材料甲打印;中心區(qū)是正方形A′B′C′D′,用材料乙打印).在打印厚度保持相同的情況下,兩種材料的消耗成本如下表
材料 | 甲 | 乙 |
價格(元/米2) | 60 | 30 |
設(shè)矩形的較短邊AH的長為x米,打印材料的總費用為y元.
(1)A′D′的長為 米(用含x的代數(shù)式表示);
(2)求y關(guān)于x的函數(shù)解析式;
(3)當(dāng)中心區(qū)的邊長不小于3時,預(yù)備材料的購買資金700元夠用嗎?請利用函數(shù)的增減性來說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,矩形OABC的兩個頂點A,C分別在x軸,y軸上,點B的坐標(biāo)是(8,2),點P是邊BC上的一個動點,連接AP,以AP為一邊朝點B方向作正方形PADE,連接OP并延長與DE交于點M,設(shè)CP=a(a>0).
(1)請用含a的代數(shù)式表示點P,E的坐標(biāo).
(2)連接OE,并把OE繞點E逆時針方向旋轉(zhuǎn)90°得EF.如圖2,若點F恰好落在x軸的正半軸上,求a與的值.
(3)①如圖1,當(dāng)點M為DE的中點時,求a的值.
②在①的前提下,并且當(dāng)a>4時,OP的延長線上存在點Q,使得EQ+PQ有最小值,請直接寫出EQ+PQ的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=4,則△CEF的周長為( 。
A.11.5B.10C.9.5D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個一元一次方程來解.求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.
用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉(zhuǎn)化”思想求方程的解;
(3)應(yīng)用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過(﹣1,0),(3,0),(1,﹣5)三點.
(1)求該二次函數(shù)的解析式;
(2)求該圖象的頂點坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com