【題目】如圖,某中學(xué)準(zhǔn)備在校園里利用院墻的一段再圍三面籬笆,形成一個(gè)矩形花園(院墻米),現(xiàn)有米長的籬笆. (籬笆必須用完)

1)設(shè)AB=x米,則BC=

2)請(qǐng)你設(shè)計(jì)一下圍法,使矩形花園的面積為米.

【答案】1)(40-2x);(2)當(dāng)x=15 時(shí),使矩形花園的面積為米.

【解析】

1)根據(jù)圖形即可列出式子;(2)設(shè)ABm,則BC為(40-2xm,根據(jù)題意列式計(jì)算解答即可.

(1)40-2x

(2)設(shè)ABm,則BC為(40-2xm,根據(jù)題意可得:

x(40-2x)=150

解得:x1=,x2=15

當(dāng)x=時(shí),40-2x=30>25.故不滿足題意,應(yīng)舍去.

當(dāng)x=15時(shí),40-2x=10<25,故當(dāng)x=15時(shí),滿足實(shí)際要求.

∴當(dāng)x=15 時(shí),使矩形花園的面積為米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全國第二屆青年運(yùn)動(dòng)會(huì)是山西省歷史上第一次舉辦的大型綜合性運(yùn)動(dòng)會(huì),太原作為主賽區(qū),新建了很多場館,其中在汾河?xùn)|岸落成了太原水上運(yùn)動(dòng)中心,它的終點(diǎn)塔及媒體中心是一個(gè)以“大帆船”造型(如圖1),外觀極具創(chuàng)新,這里主要承辦賽艇、皮劃艇、龍舟等項(xiàng)目的比賽.“青春”數(shù)學(xué)興趣小組為了測量“大帆船”AB的長度,他們站在汾河西岸,在與AB平行的直線l上取了兩個(gè)點(diǎn)C、D,測得CD=40m,CDA=120°,ACB=18.5°,BCD=26.5°,如圖2.請(qǐng)根據(jù)測量結(jié)果計(jì)算“大帆船”AB的長度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin26.5°≈0.45,tan26.5°≈0.50≈1.41,≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人計(jì)劃800一起從學(xué)校出發(fā),乘坐班車去博物館參觀,乙乘坐班車準(zhǔn)時(shí)出發(fā),但甲臨時(shí)有事,845才出發(fā).甲沿相同的路線自行駕車前往,比乙早1小時(shí)到達(dá).甲、乙兩人離學(xué)校的距離y(千米)與甲出發(fā)時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示.

1)點(diǎn)A的實(shí)際意義:   ,點(diǎn)B坐標(biāo)   ;CD   

2)學(xué)校與博物館之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖1,在Rt△ABC中,∠ACB=90°,E是邊AC上任意一點(diǎn)(點(diǎn)E與點(diǎn)A,C不重合),以CE為一直角邊作Rt△ECD∠ECD=90°,連接BE,AD

1)若CA=CB,CE=CD

猜想線段BE,AD之間的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫出結(jié)論;

現(xiàn)將圖1中的Rt△ECD繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)銳角α,得到圖2,請(qǐng)判斷中的結(jié)論是否仍然成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;

2)若CA=8,CB=6,CE=3,CD=4Rt△ECD繞著點(diǎn)C順時(shí)針轉(zhuǎn)銳角α,如圖3,連接BD,AE,計(jì)算的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(- 3,4),點(diǎn)B的坐標(biāo)為(6,n).

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接OB,求△AOB 的面積;

(3)在x軸上是否存在點(diǎn)P,使△APC是直角三角形. 若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形,點(diǎn)、在坐標(biāo)軸上, 繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到的,點(diǎn)軸上,直線軸于點(diǎn),交于點(diǎn),線段,

1)求直線的解析式;

2)求的面積;

3)點(diǎn)軸上,平面內(nèi)是否存在點(diǎn),使以點(diǎn)、、、為頂點(diǎn)的四邊形是矩形?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy內(nèi)有三點(diǎn):(0,﹣2),(1,﹣1),(2.17,0.37).則過這三個(gè)點(diǎn)_____(填不能)畫一個(gè)圓,理由是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為5的扇形AOB中,AOB=90°,點(diǎn)C是弧AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)AB重合)ODBC,OEAC,垂足分別為DE

1)當(dāng)BC=6時(shí),求線段OD的長;

2)在DOE中是否存在長度保持不變的邊?如果存在,請(qǐng)指出并求其長度;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得四邊形EFGH是正方形.

類比探究:如圖2,在正△ABC的內(nèi)部,作∠1=∠2=∠3AD,BECF兩兩相交于D,EF三點(diǎn)(D,E,F三點(diǎn)不重合).

1)△ABD,△BCE,△CAF是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明;

2)△DEF是否為正三角形?請(qǐng)說明理由;

3)如圖3,進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè)BDa,ADbABc,請(qǐng)?zhí)剿?/span>ab,c滿足的等量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案