【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于AB兩點.

(1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOB的面積;

(3)根據(jù)圖象直接寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

【答案】(1) , ;(2) ;(3) x或0<x<2

【解析】試題分析 將點代入可得反比例函數(shù)解析式,將點代入可得的值,即可得點的坐標,由坐標可得直線的解析式;
求得直線與軸的交點坐標,利用割補法可得三角形的面積;

由直線位于雙曲線上方時對應的的范圍即可得答案.

試題解析: 設反比例函數(shù)的解析式為

代入得:

∴反比例函數(shù)的解析式為

設一次函數(shù)的解析式為

代入

得:

將點 代入

得: 解得:

∴一次函數(shù)的解析式為:

在一次函數(shù)中,令得: ,解得:

時,一次函數(shù)的值小于反比例函數(shù)的值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示破殘的圓形輪片上,AB的垂直平分線交弧AB于點C,交弦AB于點D.已知AB=24cm,CD=8cm

1)求作此殘片所在的圓(不寫作法,保留作圖痕跡)

2)求殘片所在圓的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一坐標系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】未來五年,國家將投入8500億元用于緩解群眾“看病難,看病貴”問題.將8500億元用科學記數(shù)法表示為 ( )元
A.0.85×1012
B.8.5×1011
C.8.5×1012
D.85×1010

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關于x的一元二次方程ax2+bx+c﹣m=0有兩個不相等的實數(shù)根,下列結論:

①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,

其中,正確的個數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形的一個外角小于與它相鄰的內角,則這個三角形是( )
A.銳角三角形
B.鈍角三角形;
C.直角三角形
D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線的函數(shù)表達式為,它與軸、軸的交點分別為A、B兩點.

(1)求點A、B的坐標;

(2)設F是軸上一動點,⊙P經過點B且與軸相切于點F,設⊙P的圓心坐標為P(x,y),求y與之間的函數(shù)關系;

(3)是否存在這樣的⊙P,既與軸相切,又與直線相切于點B?若存在,求出圓心P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是O的直徑,點C、D在O上,點E在O外,EAC=D=60°.

1ABC的度數(shù);

(2)求證:AE是O的切線;

(3)當BC=4時,求劣弧AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組同學進行測量大樹CD高度的綜合實踐活動,如圖,在點A處測得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點D處,斜面AB的坡度(或坡比)i=1:2.4,那么大樹CD的高度約為( )(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)

A. 8.1 B. 17.2 C. 19.7 D. 25.5

查看答案和解析>>

同步練習冊答案