【題目】二次函數(shù)y=ax +bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(-1,0),對稱軸為直線x=2,下列結(jié)論:①拋物線與x軸的另一個(gè)交點(diǎn)是(5,0);②4a+c>2b;③4a+b=0;④當(dāng)x>-1時(shí),y的值隨x值的增大而增大.其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】B
【解析】①∵二次函數(shù)y=ax2+bx+c(a≠0)與x軸的一個(gè)交點(diǎn)為(-1,0)且對稱軸為直線x=2,
∴另一個(gè)交點(diǎn)坐標(biāo)為(5,0),故①正確;②∵二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(-1,0),對稱軸為直線x=2, ∴當(dāng)x=-2時(shí),y=4a-2b+c<0, ∴4a+c<2b,故②錯誤;③∵對稱軸為=- , ∴ =2, ∴4a+b=0,故③正確;④當(dāng)x<2時(shí), y的值隨x值的增大而增大, 當(dāng)x>2時(shí), y的值隨x值的增大而減小,故④錯誤.
故答案為:B.
根據(jù)拋物線的對稱性,知道次函數(shù)y=ax2+bx+c(a≠0)與x軸的一個(gè)交點(diǎn)為(-1,0)且對稱軸為直線x=2,從而得出其與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(5,0) ;拋物線當(dāng)x=-2時(shí),其對應(yīng)的函數(shù)圖像在x軸的下方,即y=4a-2b+c<0, 故4a+c<2b ;根據(jù)拋物線的對稱軸公式得出方程就可得出4a+b=0 ;利用拋物線的開口方向,及頂點(diǎn)橫坐標(biāo)知 ;當(dāng)x<2時(shí), y的值隨x值的增大而增大, 當(dāng)x>2時(shí), y的值隨x值的增大而減小 ;從而就可以對幾個(gè)答案一一判斷。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠MON=51°,點(diǎn)P在∠MON的內(nèi)部,點(diǎn)D是邊ON上任意一點(diǎn),點(diǎn)C是邊OM上任意一點(diǎn),連接PD、PC,當(dāng)△PCD的周長最小時(shí),∠CPD的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩塊相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一塊繞直角頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)到△A′BC′的位置,點(diǎn)C′在AC上,A′C′與AB相交于點(diǎn)D,則C′D= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)E是BC上的一點(diǎn),BC=3BE,點(diǎn)D是AC的中點(diǎn),若S△ADF﹣S△BEF=2.則S△ABC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定“中小學(xué)生每天在校體育活動時(shí)間不低于1小時(shí)”.為此,某市就“每天在校體育活動時(shí)間”的問題隨機(jī)抽樣調(diào)查了321名初中學(xué)生.根據(jù)調(diào)查結(jié)果將學(xué)生每天在校體育活動時(shí)間t(小時(shí))分成,,,四組,并繪制了統(tǒng)計(jì)圖(部分).
組:組:組:組:
請根據(jù)上述信息解答下列問題:
(1)組的人數(shù)是 ;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在 組內(nèi);
(3)若該市約有12840名初中學(xué)生,請你估算其中達(dá)到國家規(guī)定體育活動時(shí)間的人數(shù)大約有多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)號為1、2、3、4,隨機(jī)地摸取一個(gè)小球然后放回,再隨機(jī)地摸出一個(gè)小球,求下列事件的概率:
(1)兩次取的小球的標(biāo)號相同
(2)兩次取的小球的標(biāo)號的和等于4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD的對角線BD上一點(diǎn),PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,連接EF.給出下列五個(gè)結(jié)論:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正確的結(jié)論是___________________(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)△ABC與△A′B′C′在平面直角坐標(biāo)系中的位置如圖.
(1)分別寫出下列各點(diǎn)的坐標(biāo):A′ ; B′ ;C′ ;
(2)說明△A′B′C′由△ABC經(jīng)過怎樣的平移得到? .
(3)若點(diǎn)P(a,b)是△ABC內(nèi)部一點(diǎn),則平移后△A′B′C′內(nèi)的對應(yīng)點(diǎn)P′的坐標(biāo)為 ;
(4)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com