【題目】一列動(dòng)車(chē)從甲地開(kāi)往乙地,一列普通列車(chē)從乙地開(kāi)往甲地,兩車(chē)同時(shí)出發(fā),設(shè)普通列車(chē)行駛的時(shí)間為(小時(shí)),兩車(chē)之間的距離為(千米),圖中的折線(xiàn)表示之間的函數(shù)關(guān)系。

根據(jù)圖象回答下列問(wèn)題:

(1)甲地與乙地相距______千米,兩車(chē)出發(fā)后______小時(shí)相遇;

(2)普通列車(chē)到達(dá)終點(diǎn)共需_______小時(shí),普通列車(chē)的速度是______千米/小時(shí);

(3)動(dòng)車(chē)的速度是________千米/小時(shí);

(4)的值為________.

【答案】(1)1200;4;(2)12;100;(3)200;(4)6.

【解析】

1)初始時(shí)刻y=1200,即為兩地距離,相遇時(shí)兩車(chē)距離為0,由圖像得到相遇時(shí)刻;

2)最后到達(dá)的為普通列車(chē),根據(jù)路程除以時(shí)間可得速度;

3)設(shè)動(dòng)車(chē)速度a千米/小時(shí),由4小時(shí)相遇,列出方程可求解;

4t時(shí)刻是動(dòng)車(chē)到達(dá)乙地的時(shí)刻,用路程除以速度即可.

1)由圖像可知,甲地與乙地相距1200千米,兩車(chē)出發(fā)后4小時(shí)相遇;

2)普通列車(chē)12小時(shí)到達(dá),則速度為1200÷12=100千米/小時(shí)

3)設(shè)動(dòng)車(chē)速度a千米/小時(shí),由題意得

解得,所以動(dòng)車(chē)的速度是200千米/小時(shí);

4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(-1,5),B(-2,0),C(-4,3).

(1)請(qǐng)畫(huà)出ABC關(guān)于y軸對(duì)稱(chēng)的A,B,C,,并寫(xiě)出點(diǎn)C的坐標(biāo);

(2)ABC的面積;

(3)y軸上畫(huà)出點(diǎn)P的位置,使線(xiàn)段PA+PB的值最小,并直接寫(xiě)出PA+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在已知的ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線(xiàn)MNAB于點(diǎn)D,連接CD.CD=AC,A=50°,則∠ACB的度數(shù)為(  )

A. 90°B. 95°C. 100°D. 105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一些完全相同的正三角形按如圖所示規(guī)律擺放,第一個(gè)圖形有1個(gè)正三角形,第二個(gè)圖形有5個(gè)正三角形,第三個(gè)圖形有12個(gè)正三角形,,按此規(guī)律排列下去,第六個(gè)圖形中正三角形的個(gè)數(shù)是(  )

A. 35 B. 41 C. 45 D. 51

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,OA=2,OB=4,A點(diǎn)為頂點(diǎn),AB為腰,在第三象限作等腰RtABC.

(1)C點(diǎn)的坐標(biāo)及ABC的面積;

(2)如圖2,Py軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)P點(diǎn)在y軸負(fù)半軸上向下運(yùn)動(dòng)時(shí),若以P為直角頂點(diǎn),PA為腰作等腰RtAPD,過(guò)DDEx軸于E點(diǎn),求證:OP=DE+2

(3)已知點(diǎn)F坐標(biāo)為(-2,-2),當(dāng)Gy軸的負(fù)半軸上沿負(fù)方向運(yùn)動(dòng)時(shí),請(qǐng)?jiān)趫D3作出等腰RtFGH,且始終保持∠GFH=90°,若FGy軸負(fù)半軸交于點(diǎn)G0,m),FHx軸正半軸交于點(diǎn)Hn,0), 當(dāng)Gy軸的負(fù)半軸上沿負(fù)方向運(yùn)動(dòng)時(shí),以下結(jié)論:①m-n為定值;②m+n為定值,請(qǐng)判斷其中哪些結(jié)論是正確的,并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,在平面直角坐標(biāo)系中,對(duì)進(jìn)行循環(huán)往復(fù)的軸對(duì)稱(chēng)變換,若原來(lái)點(diǎn)A坐標(biāo)是,則經(jīng)過(guò)第2019次變換后所得的A點(diǎn)坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC=BC,DAB中點(diǎn),CEAB,CE=AB.

(1)求證:四邊形CDBE是矩形.

(2)若AC=5,CD=3,F(xiàn)BC上一點(diǎn),且DFBC,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從三角形一個(gè)頂點(diǎn)引出一條射線(xiàn)與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線(xiàn)段把這個(gè)三角形分割成兩個(gè)小三角形,若分得的兩個(gè)小三角形中一個(gè)三角形為等腰三角形,另一個(gè)三角形的三個(gè)內(nèi)角與原來(lái)三角形的三個(gè)內(nèi)角分別相等,則稱(chēng)這條線(xiàn)段叫做這個(gè)三角形的等角分割線(xiàn)

例如,等腰直角三角形斜邊上的高就是這個(gè)等腰直角三角形的一條等角分割線(xiàn)

(1)如圖1,在△ABC中,D是邊BC上一點(diǎn),若∠B=30°,∠BAD=∠C=40°,求證: AD△ABC等角分割線(xiàn);

(2)如圖2,△ABC中,∠C=90°,∠B=30°;

畫(huà)出△ABC等角分割線(xiàn),寫(xiě)出畫(huà)法并說(shuō)明理由;

BC=3,求出中畫(huà)出的等角分割線(xiàn)的長(zhǎng)度.

(3)△ABC中,∠A=24°,若△ABC存在等角分割線(xiàn)”CD,直接寫(xiě)出所有符合要求的∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,∠ABC和∠ACB的角平分線(xiàn)相交于點(diǎn)P,且PEABPFAC,垂足分別為E、F

1)求證:PE=PF;

2)若∠BAC=60°,連接AP,求∠EAP的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案