【題目】如圖,在直角梯形ABCD中,AD∥BC,AD⊥DC,點A關于對角線BD的對稱點F剛好落在腰DC上,連接AF交BD于點E,AF的延長線與BC的延長線交于點G,M,N分別是BG,DF的中點.
(1)求證:四邊形EMCN是矩形;
(2)若AD=2,S梯形ABCD= ,求矩形EMCN的長和寬.

【答案】
(1)證明:∵點A、F關于BD對稱,

∴AD=DF,DE⊥AF,

又∵AD⊥DC,

∴△ADF、△DEF是等腰直角三角形,

∴∠DAF=∠EDF=45°,

∵AD∥BC,

∴∠G=∠GAD=45°,

∴△BGE是等腰直角三角形,

∵M,N分別是BG,DF的中點,

∴EM⊥BC,EN⊥CD,

又∵AD∥BC,AD⊥DC,

∴BC⊥CD,

∴四邊形EMCN是矩形;


(2)解:由(1)可知,∠EDF=45°,BC⊥CD,

∴△BCD是等腰直角三角形,

∴BC=CD,

∴S梯形ABCD= (AD+BC)CD= (2+CD)CD= ,

即CD2+2CD﹣15=0,

解得CD=3,CD=﹣5(舍去),

∵△ADE、△DEF是等腰直角三角形,

∴DF=AD=2,

∵N是DF的中點,

∴EN=DN= DF= ×2=1,

∴CN=CD﹣DN=3﹣1=2,

∴矩形EMCN的長和寬分別為2,1.


【解析】(1)根據軸對稱的性質可得AD=DF,DE⊥AF,然后判斷出△ADF、△DEF是等腰直角三角形,再根據等腰直角三角形的性質求出∠DAF=∠EDF=45°,根據兩直線平行,內錯角相等求出∠BGE=45°,然后判斷出△BGE是等腰直角三角形,根據等腰直角三角形的性質可得EM⊥BC,EN⊥CD,再根據矩形的判定證明即可;(2)判斷出△BCD是等腰直角三角形,然后根據梯形的面積求出CD的長,再根據等腰直角三角形的性質求出DN,即可得解.
【考點精析】關于本題考查的直角梯形,需要了解一腰垂直于底的梯形是直角梯形才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題:

甲組的5名工人9月份完成的總工作量比此月人均定額的4倍多30件,乙組的6名工人9月份完成的總工作量比此月人均定額的6倍少30

(1)如果兩組工人實際完成的此月人均工作量相等,那么此月人均定額是多少?

(2)如果甲組工人實際完成的此月人均工作量比乙組的多3件,則此月人均定額是多少?

(3)如果甲組工人實際完成的此月人均工作量比乙組的少3件,則此月人均定額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是等邊內一點, .將繞點按順時針方向旋轉,連接

(1)求證: 是等邊三角形;

(2)當時,試判斷的形狀,并說明理由;

(3)探究:當為多少度時, 是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題
(1)化簡:( + )÷
(2)解不等式組

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以△ABC的BC邊上一點O為圓心的圓,經過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF= ,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎摩托車從B地到A地,到達A地后立即按原路返回.如圖是甲、乙兩人離B地的距離y(km)與行駛時間x(h)之間的函數(shù)圖象,根據圖象解答以下問題:

(1)直接寫出y,y與x之間的函數(shù)關系式(不寫過程);

(2)①求出點M的坐標,并解釋該點坐標所表示的實際意義;

根據圖象判斷,x取何值時,y>y

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據:

次數(shù)

1

2

3

4

5

6

7

8

9

10

黑棋數(shù)

1

3

0

2

3

4

2

1

1

3

根據以上數(shù)據,估算袋中的白棋子數(shù)量為(
A.60枚
B.50枚
C.40枚
D.30枚

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).

(1)畫出與△ABC 關于 y 軸對稱的圖形△A1B1C1;

(2)寫出△A1B1C1 各頂點坐標;

(3)求△ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某同學對多項式(a2-4a+2)(a2-4a+6)+4進行因式分解的過程:

解:設a2-4a=y(tǒng),則

原式=(y+2)(y+6)+4(第一步)

=y(tǒng)2+8y+16(第二步)

=(y+4)2(第三步)

=(a2-4a+4)2.(第四步)

(1)該同學因式分解的結果是否徹底:________(徹底不徹底”);

(2)若不徹底,請你直接寫出因式分解的最后結果:________;

(3)請你模仿以上方法對多項式(x2-2x)(x2-2x+2)+1進行因式分解.

查看答案和解析>>

同步練習冊答案