【題目】方程(x﹣2)(x+1)=x﹣2的解是( )
A.x=0
B.x=2
C.x=2或x=﹣1
D.x=2或x=0

【答案】D
【解析】解:∵(x﹣2)(x+1)﹣(x﹣2)=0,

∴(x﹣2)(x+1﹣1)=0,即x(x﹣2)=0,

則x=0或x﹣2=0,

解得:x=0或x=2,

所以答案是:D.

【考點精析】根據(jù)題目的已知條件,利用因式分解法的相關(guān)知識可以得到問題的答案,需要掌握已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB=50°,∠BOC=30°,則∠AOC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形具有而菱形不一定具有的性質(zhì)是(

A. 對角線互相平分 B. 對角線相等 C. 內(nèi)角和為360 D. 對角線平分內(nèi)角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( )
A.a+a=a2
B.a2a=a2
C.a3÷a2=a (a≠0)
D.(a23=a5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學興趣小組活動中,李燕和劉凱兩位同學設計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)動甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針所指區(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針所指區(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針所指區(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).

(1)請用列表的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;

(2)分別求出李燕和劉凱獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們定義直線y=axa為拋物線ab、c為常數(shù),a0)的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.

已知拋物線與其“夢想直線”交于A、B兩點(點A在點B的左側(cè)),與x軸負半軸交于點C

1)填空:該拋物線的“夢想直線”的解析式為 ,點A的坐標為 ,點B的坐標為

2)如圖,點M為線段CB上一動點,將△ACMAM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“夢想三角形”,求點N的坐標;

3)當點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列語句正確的是( )

A. 線段繞著它的中點旋轉(zhuǎn)180°后與原線段重合,那么線段是中心對稱圖形

B. 正三角形繞著它的三邊中線的交點旋轉(zhuǎn)120°后與原圖形重合,則正三角形是中心對稱圖形

C. 正方形繞著它的對角線交點旋轉(zhuǎn)90°后與原圖形重合,則正方形是中心對稱圖形

D. 正五角星繞著它的中心旋轉(zhuǎn)72°后與原圖形重合,則正五角星是中心對稱圖形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(-2x+a)(x-1)的展開式中不含x的一次項,則a的值是( )

A. -2B. 2C. -1D. 任意數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值(x 2y)2 (8x2 y2 10xy3 2xy) 2xy,其中x=-1,y=-2.

查看答案和解析>>

同步練習冊答案