(2010•鄂爾多斯)某數(shù)學(xué)興趣小組,利用樹影測(cè)量樹高,如圖(1),已測(cè)出樹AB的影長(zhǎng)AC為12米,并測(cè)出此太陽(yáng)光線與地面成30°夾角.(1.4,1.7)
(1)求出樹高AB;
(2)因水土流失,此時(shí)樹AB沿太陽(yáng)光線方向倒下,在傾倒過(guò)程中,樹影長(zhǎng)度發(fā)生了變化,假設(shè)太陽(yáng)光線于地面夾角保持不變(用圖(2)解答)
①求樹與地面成45°角時(shí)的影長(zhǎng);
②求樹的最大影長(zhǎng).

【答案】分析:(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函數(shù)即可求得AB的長(zhǎng);
(2)①在△AB1C1中,已知AB1的長(zhǎng),即AB的長(zhǎng),∠B1AC1=45°,∠B1C1A=30°.過(guò)B1作AC1的垂線,在直角△AB1N中根據(jù)三角函數(shù)求得AN,BN;再在直角△B1NC1中,根據(jù)三角函數(shù)求得NC1的長(zhǎng).即可求解;
②當(dāng)樹與地面成60°角時(shí)影長(zhǎng)最大,根據(jù)三角函數(shù)即可求解.
解答:解:(1)AB=ACtan30°=12×=4≈7(米).
答:樹高約為7米.

(2)作B1N⊥AC1于N.
①如圖(2),B1N=AN=AB1sin45°=(米).
NC1=NB1tan60°=(米).
AC1=AN+NC1=5+8=13(米).
答:樹與地面成45°角時(shí)的影長(zhǎng)約為13米.

②如圖(2),當(dāng)樹與地面成60°角時(shí)影長(zhǎng)最大AC2(或樹與光線垂直時(shí)影長(zhǎng)最大或光線與半徑為AB的⊙A相切時(shí)影長(zhǎng)最大)
AC2=2AB2≈14.
答:樹的最大影長(zhǎng)約為14米.
點(diǎn)評(píng):一般三角形的計(jì)算可以通過(guò)作高線轉(zhuǎn)化為直角三角形的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圖形的平移》(01)(解析版) 題型:解答題

(2010•鄂爾多斯)如圖,四邊形OABC是一張放在平面直角坐標(biāo)系的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=15,OC=9,在AB上取一點(diǎn)M,使得△CBM沿CM翻折后,點(diǎn)B落在x軸上,記作N點(diǎn).
(1)求N點(diǎn)、M點(diǎn)的坐標(biāo);
(2)將拋物線y=x2-36向右平移a(0<a<10)個(gè)單位后,得到拋物線l,l經(jīng)過(guò)點(diǎn)N,求拋物線l的解析式;
(3)①拋物線l的對(duì)稱軸上存在點(diǎn)P,使得P點(diǎn)到M、N兩點(diǎn)的距離之差最大,求P點(diǎn)的坐標(biāo);
②若點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與O、C重合),過(guò)點(diǎn)D作DE∥OA交CN于E,設(shè)CD的長(zhǎng)為m,△PDE的面積為S,求S與m之間的函數(shù)關(guān)系式,并說(shuō)明S是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:選擇題

(2010•鄂爾多斯)定義新運(yùn)算:a※b=,則函數(shù)y=3※x的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年內(nèi)蒙古鄂爾多斯市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•鄂爾多斯)如圖,四邊形OABC是一張放在平面直角坐標(biāo)系的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=15,OC=9,在AB上取一點(diǎn)M,使得△CBM沿CM翻折后,點(diǎn)B落在x軸上,記作N點(diǎn).
(1)求N點(diǎn)、M點(diǎn)的坐標(biāo);
(2)將拋物線y=x2-36向右平移a(0<a<10)個(gè)單位后,得到拋物線l,l經(jīng)過(guò)點(diǎn)N,求拋物線l的解析式;
(3)①拋物線l的對(duì)稱軸上存在點(diǎn)P,使得P點(diǎn)到M、N兩點(diǎn)的距離之差最大,求P點(diǎn)的坐標(biāo);
②若點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與O、C重合),過(guò)點(diǎn)D作DE∥OA交CN于E,設(shè)CD的長(zhǎng)為m,△PDE的面積為S,求S與m之間的函數(shù)關(guān)系式,并說(shuō)明S是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省十堰市鄖西縣中考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•鄂爾多斯)如圖,某電信公司提供了A,B兩種方案的移動(dòng)通訊費(fèi)用y(元)與通話時(shí)間x(元)之間的關(guān)系,則以下說(shuō)法錯(cuò)誤的是( )

A.若通話時(shí)間少于120分,則A方案比B方案便宜20元
B.若通話時(shí)間超過(guò)200分,則B方案比A方案便宜12元
C.若通訊費(fèi)用為60元,則B方案比A方案的通話時(shí)間多
D.若兩種方案通訊費(fèi)用相差10元,則通話時(shí)間是145分或185分

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省黃岡市浠水縣麻橋中學(xué)中考模擬數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•鄂爾多斯)如圖,某電信公司提供了A,B兩種方案的移動(dòng)通訊費(fèi)用y(元)與通話時(shí)間x(元)之間的關(guān)系,則以下說(shuō)法錯(cuò)誤的是( )

A.若通話時(shí)間少于120分,則A方案比B方案便宜20元
B.若通話時(shí)間超過(guò)200分,則B方案比A方案便宜12元
C.若通訊費(fèi)用為60元,則B方案比A方案的通話時(shí)間多
D.若兩種方案通訊費(fèi)用相差10元,則通話時(shí)間是145分或185分

查看答案和解析>>

同步練習(xí)冊(cè)答案