(2013•恩施州)“一炷香”是聞名中外的恩施大峽谷著名的景點.某校綜合實踐活動小組先在峽谷對面的廣場上的A處測得“香頂”N的仰角為45°,此時,他們剛好與“香底”D在同一水平線上.然后沿著坡度為30°的斜坡正對著“一炷香”前行110,到達B處,測得“香頂”N的仰角為60°.根據(jù)以上條件求出“一炷香”的高度.(測角器的高度忽略不計,結果精確到1米,參考數(shù)據(jù):
2
≈1.414
,
3
,1.732
).
分析:首先過點B作BF⊥DN于點F,過點B作BE⊥AD于點E,可得四邊形BEDF是矩形,然后在Rt△ABE中,由三角函數(shù)的性質,可求得AE與BE的長,再設BF=x米,利用三角函數(shù)的知識即可求得方程:55
3
+x=
3
x+55,繼而可求得答案.
解答:解:過點B作BF⊥DN于點F,過點B作BE⊥AD于點E,
∵∠D=90°,
∴四邊形BEDF是矩形,
∴BE=DF,BF=DE,
在Rt△ABE中,AE=AB•cos30°=110×
3
2
=55
3
(米),BE=AB•sin30°=
1
2
×110=55(米);
設BF=x米,則AD=AE+ED=55
3
+x(米),
在Rt△BFN中,NF=BF•tan60°=
3
x(米),
∴DN=DF+NF=55+
3
x(米),
∵∠NAD=45°,
∴AD=DN,
即55
3
+x=
3
x+55,
解得:x=55,
∴DN=55+
3
x≈150(米).
答:“一炷香”的高度約為150米.
點評:本題考查了仰角與俯角的知識.此題難度適中,注意能借助仰角與俯角構造直角三角形并解直角三角形是解此題的關鍵,注意掌握數(shù)形結合思想與方程思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•恩施州)如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點,過C作CD⊥AB于點D,CD交AE于點F,過C作CG∥AE交BA的延長線于點G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•恩施州)如圖所示,在直角坐標系中放置一個邊長為1的正方形ABCD,將正方形ABCD沿x軸的正方向無滑動的在x軸上滾動,當點A離開原點后第一次落在x軸上時,點A運動的路徑線與x軸圍成的面積為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•恩施州)函數(shù)y=
3-x
x+2
的自變量x的取值范圍是
x≤3且x≠-2
x≤3且x≠-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•恩施州)今年參加恩施州初中畢業(yè)學業(yè)考試的考試約有39360人,請將數(shù)39360用科學記數(shù)法表示為(保留三位有效數(shù)字)(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•恩施州)如圖所示,在平行四邊形ABCD中,AC與BD相交于點O,E為OD的中點,連接AE并延長交DC于點F,則DF:FC=( 。

查看答案和解析>>

同步練習冊答案