【題目】如圖,菱形ABCD中,AB=2,∠A=120°,點P,Q,K分別為線段BC,CD,BD上的任意一點,則PK+QK的最小值為【 】
A.1 B. C. 2 D.+1
【答案】B。
【解析】分兩步
(1)若點P,Q固定,此時點K的位置:如圖,作點P關(guān)于BD的對稱點P1,連接P1Q,交BD于點K1。
由線段中垂線上的點到線段兩端距離相等的性質(zhì),得
P1K1 = P K1,P1K=PK。
由三角形兩邊之和大于第三邊的性質(zhì),得P1K+QK>P1Q= P1K1+Q K1= P K1+Q K1。
∴此時的K1就是使PK+QK最小的位置。
(2)點P,Q變動,根據(jù)菱形的性質(zhì),點P關(guān)于BD的對稱點P1在AB上,即不論點P在BC上任一點,點P1總在AB上。
因此,根據(jù)直線外一點到直線的所有連線中垂直線段最短的性質(zhì),得,當P1Q⊥AB時P1Q最短。
過點A作AQ1⊥DC于點Q1。 ∵∠A=120°,∴∠DA Q1=30°。
又∵AD=AB=2,∴P1Q=AQ1=AD·cos300=。
綜上所述,PK+QK的最小值為。故選B。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,I是△ABC的內(nèi)心,AI的延長線與△ABC的外接圓相交于點D,與BC交于點E,連接BI、CI、BD、DC.下列說法中正確的有( )
①∠CAD繞點A順時針旋轉(zhuǎn)一定的角度一定能與∠DAB重合;
②I到△ABC三個頂點的距離相等;③∠BIC=90°+∠BAC;
④線段DI是線段DE與DA的比例中項;⑤點D是△BIC的外心.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為( )
A.-4 B.4 C.-2 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,P是對角線AC上一點(不與點A、C重合),連接PD,過點P作PE⊥PD交射線BC于點E.
(1)如圖1,求證:PD=PE;
(2)若正方形ABCD的邊長為4,,求CE長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖正方形ABCD的邊長為2,點E,F,G,H分別在AD,AB,BC,CD上,且EA=FB=GC=HD,分別將△AEF,△BFG,△CGH,△DHE沿EF,FG,GH,HE翻折,得四邊形MNKP,設(shè)AE=x(0<x<1),S四邊形MNKP=y,則y關(guān)于x的函數(shù)圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從左邊第一個格子開始向右數(shù),在每個小格子中都填入一個整數(shù),使得其中任意三個相鄰格子中所填整數(shù)之和都相等.
1 | ° | x | 7 | ﹣3 | … |
(1)可知x= ,= ,°= ;
(2)試判斷第2016個格子中的數(shù)是多少?并給出相應(yīng)的理由.
(3)判斷:前n個格子中所填整數(shù)之和是否可能為2016?若能,求出n的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為籌備校慶活動,準備印刷一批校慶紀念冊,該紀念冊每冊需要10張同樣大小的紙,其中4張為彩頁,6張為黑白頁,印制該紀念冊的總費用由制版費和印刷費兩部分組成,制版費與印數(shù)無關(guān),價格為彩頁300元/張,黑白頁50元/張,印刷費與印數(shù)的關(guān)系見下表:
印數(shù)(單位:千冊) | ||
彩色(單位:元/張) | 2.2 | 2.0 |
黑白(單位:元/張) | 0.7 | 0.6 |
求:(1)印刷這批紀念冊的制版費為多少元?
(2)若印刷2千冊,則共需多少費用?
(3)如果該校希望印數(shù)至少為4千冊,總費用為元,請用含有的式子表示總費用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB分別與x軸、y軸交于點B、C,與直線OA交于點A.已知點A的坐標為(﹣3,5),OC=4.
(1)分別求出直線AB、AO的解析式;
(2)求△ABO的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com