當(dāng)兩個(gè)等腰三角形的_______時(shí)不一定全等.

[    ]

A.兩腰分別對(duì)應(yīng)相等          B.腰和頂角分別對(duì)應(yīng)相等

C.底角和底邊分別對(duì)應(yīng)相等         D.腰和底邊分別對(duì)應(yīng)相等

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰三角形與正三角形的形狀有著差異,我們把它與正三角形的接近程度稱為等腰三角形的“正度”,在研究“正度”時(shí),應(yīng)符合下面四個(gè)條件:①“正度”的值是非負(fù)數(shù);②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.
可用|sinα-
3
2
|
表示等腰三角形的“正度”,|sinα-
3
2
|
的值越小,α越接近60°,表示等腰三角形越接近正三角形,且當(dāng)兩個(gè)等腰三角形相似時(shí),它們的底角相等,顯然,它們的“正度”|sinα-
3
2
|
也相等,當(dāng)α=60°時(shí),|sinα-
3
2
|=0

而如果用
a
b
表示等腰三角形的“正度”,就不符合要求,因?yàn)榇藭r(shí)正三角形的正度是1!
解答下列問(wèn)題:
甲同學(xué)認(rèn)為:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同學(xué)認(rèn)為:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
精英家教網(wǎng)(1)他們的說(shuō)法合理嗎?為什么?
(2)對(duì)你認(rèn)為不合理的方案加以改進(jìn),使其合理;
(3)請(qǐng)你再給出一種衡量等腰三角形“正度”的合理的表達(dá)式,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•義烏市模擬)有以下四個(gè)命題:其中正確的結(jié)論的個(gè)數(shù)是(  )
①反比例函數(shù)y=-
2
x
,當(dāng)x>-2時(shí),y隨x的增大而增大; ②拋物線y=x2-2x+2與兩坐標(biāo)軸無(wú)交點(diǎn);③平分弦的直徑垂直于弦,且平分弦所對(duì)的弧;、苡幸粋(gè)角相等的兩個(gè)等腰三角形相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,等腰三角形與正三角形的形狀有著差異,我們把它與正三角形的接近程度稱為等腰三角形的“正度”,在研究“正度”時(shí),應(yīng)符合下面四個(gè)條件:①“正度”的值是非負(fù)數(shù);②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.
可用數(shù)學(xué)公式表示等腰三角形的“正度”,數(shù)學(xué)公式的值越小,α越接近60°,表示等腰三角形越接近正三角形,且當(dāng)兩個(gè)等腰三角形相似時(shí),它們的底角相等,顯然,它們的“正度”數(shù)學(xué)公式也相等,當(dāng)α=60°時(shí),數(shù)學(xué)公式
而如果用數(shù)學(xué)公式表示等腰三角形的“正度”,就不符合要求,因?yàn)榇藭r(shí)正三角形的正度是1!
解答下列問(wèn)題:
甲同學(xué)認(rèn)為:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同學(xué)認(rèn)為:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
(1)他們的說(shuō)法合理嗎?為什么?
(2)對(duì)你認(rèn)為不合理的方案加以改進(jìn),使其合理;
(3)請(qǐng)你再給出一種衡量等腰三角形“正度”的合理的表達(dá)式,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年河北省保定市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,等腰三角形與正三角形的形狀有著差異,我們把它與正三角形的接近程度稱為等腰三角形的“正度”,在研究“正度”時(shí),應(yīng)符合下面四個(gè)條件:①“正度”的值是非負(fù)數(shù);②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.
可用表示等腰三角形的“正度”,的值越小,α越接近60°,表示等腰三角形越接近正三角形,且當(dāng)兩個(gè)等腰三角形相似時(shí),它們的底角相等,顯然,它們的“正度”也相等,當(dāng)α=60°時(shí),
而如果用表示等腰三角形的“正度”,就不符合要求,因?yàn)榇藭r(shí)正三角形的正度是1!
解答下列問(wèn)題:
甲同學(xué)認(rèn)為:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同學(xué)認(rèn)為:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
(1)他們的說(shuō)法合理嗎?為什么?
(2)對(duì)你認(rèn)為不合理的方案加以改進(jìn),使其合理;
(3)請(qǐng)你再給出一種衡量等腰三角形“正度”的合理的表達(dá)式,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案