如圖,將等邊三角形ABC剪去一個角后,則∠1+∠2的大小為


  1. A.
    120°
  2. B.
    180°
  3. C.
    200°
  4. D.
    240°
D
分析:根據(jù)等邊三角形的性質(zhì)求出∠B、∠C的度數(shù),再根據(jù)四邊形的內(nèi)角和定理求出∠1+∠2的大小.
解答:因為△ABC為等邊三角形,
所以∠B+∠C=60°+60°=120°,
根據(jù)四邊形內(nèi)角和為360°,
可知∠1+∠2=360°-120°=240°.
故選D.
點評:此題通過剪切,將四邊形的內(nèi)角和等邊三角形的知識結(jié)合起來,是一道好題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,將等邊三角形ABC剪去一個角后,則∠1+∠2的大小為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,將等邊三角形分割成三個全等的圖形,請畫出三種不同的分割方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,將等邊三角形紙片(△ABC)的∠A剪下,則∠1+∠2=
240°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,將等邊三角形APB繞頂點P按順時針方向旋轉(zhuǎn)150°后,得到△CPD,連接AD、BC.
(1)求∠PCB的度數(shù);
(2)猜想四邊形ABCD是
等腰梯
形,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將等邊三角形PQR放在正方形ABCD上,邊QR與AB完全重合.則:
(1)圖①中點P與正方形中的任意兩個頂點能構(gòu)成多少個等腰三角形(等邊△PQR除外)?直接寫出這些三角形的名稱
 

(2)現(xiàn)在將正方形ABCD固定不動,等邊三角形PQR繞著點R旋轉(zhuǎn),使點P與C重合(如圖②,這算第1步,點P落在P1處),再繞著點P旋轉(zhuǎn),使點Q與點D重合(如圖③,這算第2步,點P落在P2處),重復(fù)這樣的步驟,可得到圖④…,則請你探究:經(jīng)過
 
步,△PQR首次與原位置重合;又經(jīng)過
 
步,點P首次回到原處.
精英家教網(wǎng)
(3)若正方形ABCD的邊長等于4,則按第(2)題的方法從圖①開始,連續(xù)旋轉(zhuǎn)了2006步,最后點P落在P2006處.請畫出此時圖形的位置,并計算此時點P2006到RA的距離.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案