【題目】拋物線y=x2+1過兩點A(﹣2,y1)和B(3,y2),則y1y2(填>,<,=).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個長方形的一邊長為2a+3b,另一邊長為a+b,則這個長方形的周長是( )
A.12a+16b
B.6a+8b
C.3a+4b
D.2a2+5ab+3b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”黃金周期間,淮安動物園在7天假期中每天接待的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù)),把9月30日的游客人數(shù)記為a萬人.
(1)請用含a的代數(shù)式表示10月2日的游客人數(shù);
(2)請判斷七天內(nèi)游客人數(shù)最多的是哪天,有多少人?
(3)若9月30日的游客人數(shù)為2萬人,門票每人10元,問黃金周期間淮安動物園門票收入是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣(x+4)2+6的頂點坐標(biāo)是( 。
A.(4,6)B.(﹣4,6)C.(4,﹣6)D.(﹣4,﹣6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2﹣6x+c與x軸交于點A(﹣5,0)、B(﹣1,0),與y軸交于點C(0,﹣5),點P是拋物線上的動點,連接PA、PC,PC與x軸交于點D.
(1)求該拋物線所對應(yīng)的函數(shù)解析式;
(2)若點P的坐標(biāo)為(﹣2,3),請求出此時△APC的面積;
(3)過點P作y軸的平行線交x軸于點H,交直線AC于點E,如圖2.
①若∠APE=∠CPE,求證:=;
②△APE能否為等腰三角形?若能,請求出此時點P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖(1)在ΔABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于點D,BE⊥MN于點E.
(1)求證:①ΔADC≌ΔCEB ②DE=AD+BE
(2)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖(2)的位置時,DE、AD、BE 有怎樣的關(guān)系?并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列一段文字,然后回答問題.
已知在平面內(nèi)兩點P1(x1,y1)、P2(x2,y2),其兩點間的距離P1P2=,同時,當(dāng)兩點所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時,兩點間距離公式可簡化為|x2﹣x1|或|y2﹣y1|.
(1)已知A(2,4)、B(-3,-8),試求A、B兩點間的距離;
(2)已知A、B在平行于y軸的直線上,點A的縱坐標(biāo)為4,點B的縱坐標(biāo)為-1,試求A、B兩點間的距離;
(3)已知一個三角形各頂點坐標(biāo)為D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形狀嗎?說明理由;
(4)平面直角坐標(biāo)中,在x軸上找一點P,使PD+PF的長度最短,求出點P的坐標(biāo)以及PD+PF的最短長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.袋中有形狀、大小、質(zhì)地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球
B.天氣預(yù)報“明天降水概率10%”,是指明天有10%的時間會下雨
C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎
D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com