如圖:等圓⊙O1和⊙O2相交于A、B兩點,⊙O1經過⊙O2的圓心,順次連接A、O1、B、O2.
(1)求證:四邊形AO1BO2是菱形;
(2)過直徑AC的端點C作⊙O1的切線CE交AB的延長線于E,連接CO2交AE于D,求證:CE=2DO2;
(3)在(2)的條件下,若,求的值.
(1)根據等圓的性質可得,即可證得結論;(2)根據菱形的性質可得∠=∠,根據CE是⊙O1的切線,AC是⊙O1的直徑可得∠=∠=90°,即可證得△ACE∽△AO2D,根據相似三角形的性質求解即可;(3)
解析試題分析:(1)根據等圓的性質可得,即可證得結論;
(2)根據菱形的性質可得∠=∠,根據CE是⊙O1的切線,AC是⊙O1的直徑可得∠=∠=90°,即可證得△ACE∽△AO2D,根據相似三角形的性質求解即可;
(3)根據菱形的性質可得∥,即可證得△ACD∽△,再根據相似三角形的性質及求解即可.
(1)∵⊙O1與⊙O2是等圓,
∴
∴四邊形是菱形;
(2)∵四邊形是菱形
∴∠=∠
∵CE是⊙O1的切線,AC是⊙O1的直徑
∴∠=∠=90°
∴△ACE∽△AO2D
∴,即;
(3)∵四邊形是菱形
∴∥
∴△ACD∽△
∴
∴
∵
∴.
考點:圓的綜合題
點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
科目:初中數學 來源: 題型:
3 |
AM |
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2012年初中畢業(yè)升學考試(廣西桂林卷)數學(帶解析) 題型:解答題
如圖,等圓⊙O1和⊙O2相交于A、B兩點,⊙O1經過⊙O2的圓心,順次連接
A、O1、B、O2.
(1)求證:四邊形AO1BO2是菱形;
(2)過直徑AC的端點C作⊙O1的切線CE交AB的延長線于E,連接CO2交AE于D,求證:CE=2O2D;
(3)在(2)的條件下,若△AO2D的面積為1,求△BO2D的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com