【題目】二次函數(shù)為常數(shù),中的與的部分對應(yīng)值如下表:
x | -1 | 0 | 3 |
y | n | -3 | -3 |
當(dāng)時,下列結(jié)論中一定正確的是________(填序號即可)
①;②當(dāng)時,的值隨值的增大而增大;③;④當(dāng)時,關(guān)于的一元二次方程的解是,.
【答案】①②④
【解析】
①根據(jù)表格數(shù)據(jù)得到對稱軸為,c=-3﹤0,又n﹥0知a﹥0,即可得出答案;
②根據(jù)二次函數(shù)的性質(zhì)即可解答;
③根據(jù)二次函數(shù)的性質(zhì),結(jié)合圖象即可解答;
④利用待定系數(shù)法求出a、b、c,代入解一元二次方程即可解答.
由表格數(shù)據(jù)知,二次函數(shù)的對稱軸為,且c=-3﹤0,
∵n﹥0,∴a﹥0,
∵對稱軸﹥0,
∴b﹤0即 bc﹥0,故①正確;
∵a﹥0,對稱軸為,
∴當(dāng)x﹥時,的值隨值的增大而增大,
∴當(dāng)時,的值隨值的增大而增大,
故②正確;
③由對稱軸得:b=-3a,
∴
∵當(dāng)x=-1時,y=n,
∴n=a+3a-3=4a-3,
∴n﹤4a,故③錯誤;
④當(dāng)n=1時,將(-1,1),(0,-3),(3,-3)代入函數(shù)解析式中,得:
,
解得,
∴關(guān)于x的一元二次方程為,解得,,
故④正確,
故答案是:①②④
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長是6,∠A=60°,E是AD的中點,F是AB邊上一個動點,EG=EF且∠GEF=60°,則GB+GC的最小值是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在開展讀書交流活動中,全體師生積極捐書,為了解所捐書籍的種類,對部分書籍進行了抽樣調(diào)查,李老師根據(jù)調(diào)查數(shù)據(jù)繪制了如下不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計回答下面問題:
(1)本次抽樣調(diào)查的書籍有多少本?請補全條形統(tǒng)計圖;
(2)求出圖1中表示文學(xué)類書籍的扇形圓心角度數(shù);
(3)本次活動師生共捐書1200本,請估計有多少本科普類圖書?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末小明勻速步行趕往學(xué)校參加學(xué)校組織的植樹活動,小明從家出發(fā)30分鐘后,忽然想起沒有帶植樹工具,于是馬上掉頭往回走行走速度比之前提高了1千米/時(仍保持勻速步行),同時小明打電話給爸爸,請爸爸幫他把植樹工具送過來,從小明開始打電話到爸爸出門一共用了4分鐘,爸爸的行走速度與此時小明的行走速度相同,兩人相遇后,小明立即趕往學(xué)校,爸爸則轉(zhuǎn)身回家,兩人速度均保持不變,爸爸在回家途中用了10分鐘吃早餐,然后立即回家,當(dāng)爸爸到家時小明剛好到達學(xué)校.爸爸和小明相距的路程y(千米)與小明從家出發(fā)的時間x(分鐘)之間的關(guān)系如圖所示,求今天早上小明從家到學(xué)校途中行走的總路程是________千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,兩條高AD,BE交于點P.過點E作,垂足為G,交AD于點F,過點F作,交BC于點H,交BE交于點Q,連接DE.
(1)若,,求DE的長
(2)若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過和兩點的拋物線交軸于兩點,是拋物線上一動點,平行于軸的直線經(jīng)過點.
(1)求拋物線的解析式;
(2)如圖1,軸上有點連接,設(shè)點到直線的距離為..小明在探究的值的過程中,是這樣思考的:當(dāng)是拋物線的頂點時,計算的值;當(dāng)不是拋物線的頂點時,猜想是一個定值.請你直接寫出的值,并證明小明的猜想.
(3)如圖2,點在第二象限,分別連接、,并延長交直線于兩點.若兩點的橫坐標分別為,試探究之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=16cm,AC=12cm,動點P、Q分別以每秒2cm和1cm的速度同時開始運動,其中點P從點A出發(fā),沿AC邊一直移到點C為止,點Q從點B出發(fā)沿BA邊一直移到點A為止,(點P到達點C后,點Q繼續(xù)運動)
(1)請直接用含t的代數(shù)式表示AP的長和AQ的長,并寫出定義域.
(2)當(dāng)t等于何值時,△APQ與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鐘南山院士談到防護新型冠狀病毒肺炎時說:“我們需要重視防護,但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內(nèi)注意通風(fēng),勤洗手,多運動,少熬夜.”某社區(qū)為了加強社區(qū)居民對新型冠狀病毒肺炎防護知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護知識,并鼓勵社區(qū)居民在線參與作答《年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷(滿分分),社區(qū)管理員隨機從有人的某小區(qū)抽取若干名人員的答卷成績,并對他們的成績(單位:分)統(tǒng)計整理后繪制了一幅不完整的統(tǒng)計表(如圖所示)
等級 | 成績() | 頻數(shù) | 頻率 |
合計 |
根據(jù)上面提供的信息,回答下列問題:
(1)統(tǒng)計表中的=___,=_____;
(2)根據(jù)抽樣調(diào)查結(jié)果,請估計該小區(qū)答題成績?yōu)椤?/span>級”的有多少人?
(3)該社區(qū)有名男管理員和名女管理員,現(xiàn)從中隨機挑選名管理員參加“社區(qū)防控”宣傳活動,請用樹狀圖法或列表法求出恰好選中“男女”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,對于點和,給出如下定義:
如果,那么稱點為點的“伴隨點”.
例如:點的“伴隨點”為點;點的“伴隨點”為點.
(1)直接寫出點的“伴隨點”的坐標.
(2)點在函數(shù)的圖象上,若其“伴隨點”的縱坐標為2,求函數(shù)的解析式.
(3)點在函數(shù)的圖象上,且點關(guān)于軸對稱,點的“伴隨點”為.若點在第一象限,且,求此時“伴隨點”的橫坐標.
(4)點在函數(shù)的圖象上,若其“伴隨點”的縱坐標的最大值為,直接寫出實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com