如圖,在四邊形ABCD中,∠DAB=60º,AC平分∠DAB,BC⊥AC,AC與BD交于點E,AD=6,CE=,,求BC、DE的長及四邊形ABCD的面積.

 

【答案】

4,,

【解析】

試題分析:過點D作DF⊥AC于F,先根據(jù)角平分線的性質(zhì)求得∠DAC=∠BAC=30°,根據(jù)垂直的定義可得∠AFD=∠ACB=90°,再根據(jù)含30°角的直角三角形的性質(zhì)即可求得DF的長,根據(jù)即可求得BC、EF的長,然后根據(jù)勾股定理可以求得DE的長,最后由即可求得結(jié)果.

過點D作DF⊥AC于F

∵∠DAB=60º,AC平分∠DAB,

∴∠DAC=∠BAC=30°.

∴∠AFD=∠ACB=90°.

,BC=CE==4. 

考點:角平分線的性質(zhì),勾股定理,含30°角的直角三角形的性質(zhì),銳角三角函數(shù)的定義

點評:此類問題知識點較多,綜合性較強,在中考中比較常見,一般難度不大,需熟練掌握.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當(dāng)其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊答案