如圖,已知拋物線y=x2+bx+c與x軸交于點(diǎn)A,B,AB=2,與y軸交于點(diǎn)C,對(duì)稱軸為直線x=2.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)P為對(duì)稱軸上一動(dòng)點(diǎn),求△APC周長(zhǎng)的最小值;
(3)設(shè)D為拋物線上一點(diǎn),E為對(duì)稱軸上一點(diǎn),若以點(diǎn)A,B,D,E為頂點(diǎn)的四邊形是菱形,則點(diǎn)D的坐標(biāo)為______.
(1)如圖,∵AB=2,對(duì)稱軸為直線x=2.
∴點(diǎn)A的坐標(biāo)是(1,0),點(diǎn)B的坐標(biāo)是(3,0).
∵拋物線y=x2+bx+c與x軸交于點(diǎn)A,B,
∴1、3是關(guān)于x的一元二次方程x2+bx+c=0的兩根.
由韋達(dá)定理,得
1+3=-b,1×3=c,
∴b=-4,c=3,
∴拋物線的函數(shù)表達(dá)式為y=x2-4x+3;

(2)如圖1,連接AC、BC,BC交對(duì)稱軸于點(diǎn)P,連接PA.
由(1)知拋物線的函數(shù)表達(dá)式為y=x2-4x+3,A(1,0),B(3,0),
∴C(0,3),
∴BC=
32+32
=3
2
,AC=
32+12
=
10

∵點(diǎn)A、B關(guān)于對(duì)稱軸x=2對(duì)稱,
∴PA=PB,
∴PA+PC=PB+PC.
此時(shí),PB+PC=BC.
∴點(diǎn)P在對(duì)稱軸上運(yùn)動(dòng)時(shí),(PA+PC)的最小值等于BC.
∴△APC的周長(zhǎng)的最小值=AC+AP+PC=AC+BC=3
2
+
10
;

(3)如圖2,根據(jù)“菱形ADBE的對(duì)角線互相垂直平分,拋物線的對(duì)稱性”得到點(diǎn)D是拋物線y=x2-4x+3的頂點(diǎn)坐標(biāo),即(2,-1),
當(dāng)E、D點(diǎn)在x軸的上方,即DEAB,AE=AB=BD=DE=2,此時(shí)不合題意,
故點(diǎn)D的坐標(biāo)為:(2,-1).
故答案是:(2,-1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=kx+b,與拋物線y=ax2交于A(1,m),B(-2,4)+y軸交與點(diǎn)C.
(1)求拋物線的解析式;
(2)求S△AOB;
(3)求
BC
AC
的值;
(4)判斷點(diǎn)A是否在以BO為直徑的圓上?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(7,0),點(diǎn)B的坐標(biāo)為(3,4),
(1)求經(jīng)過O、A、B三點(diǎn)的拋物線解析式;
(2)將線段AB繞A點(diǎn)順時(shí)針旋轉(zhuǎn)75°至AC,直接寫出點(diǎn)C的坐標(biāo);
(3)在y軸上找一點(diǎn)P,第一象限找一點(diǎn)Q,使得以O(shè)、B、Q、P為頂點(diǎn)的四邊形是菱形,求出點(diǎn)Q的坐標(biāo);
(4)△OAB的邊OB上有一動(dòng)點(diǎn)M,過M作MNOA交AB于N,將△BMN沿MN翻折得△DMN.設(shè)MN=x,△DMN與△OAB重疊部分的面積為y,求出y與x之間的函數(shù)關(guān)系式,并求出重疊部分面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一家電腦公司推出一款新型電腦,投放市場(chǎng)以來的利潤(rùn)情況可以看做是拋物線的一部分,請(qǐng)結(jié)合下面的圖象解答以下問題:
(1)求該拋物線對(duì)應(yīng)的二次函數(shù)的解析式;
(2)該公司在經(jīng)營(yíng)此款電腦過程中,第幾個(gè)月的利潤(rùn)最大,最大利潤(rùn)是多少;
(3)若照此經(jīng)營(yíng)下去,請(qǐng)你結(jié)合所學(xué)的知識(shí),對(duì)公司在此款電腦的經(jīng)營(yíng)狀況(是否虧損何時(shí)虧損)作出預(yù)測(cè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖一次函數(shù)y=
1
2
x+1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B;二次函數(shù)y=
1
2
x2+bx+c的圖象與一次函數(shù)y=
1
2
x+1的圖象交于B、C兩點(diǎn),與x軸交于D、E兩點(diǎn)且D點(diǎn)坐標(biāo)為(1,0).
(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上是否存在點(diǎn)P,使得△PBC是以P為直角頂點(diǎn)的直角三角形?若存在,求出所有的點(diǎn)P,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過點(diǎn)B(-2,3),原點(diǎn)O和x軸上另一點(diǎn)A,它的對(duì)稱軸與x軸交于點(diǎn)C(2,0).
(1)求此拋物線的函數(shù)關(guān)系式;
(2)連接CB,在拋物線的對(duì)稱軸上找一點(diǎn)E,使得CB=CE,求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,連接BE,設(shè)BE的中點(diǎn)為G,在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得△PBG的周長(zhǎng)最小?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

今年,6月12日為端午節(jié).在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷售情況.請(qǐng)根據(jù)小麗提供的信息,解答小華的問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某跑道的周長(zhǎng)為400m且兩端為半圓形,要使矩形內(nèi)部操場(chǎng)的面積最大,直線跑道的長(zhǎng)應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,在直角坐標(biāo)系中,矩形OABC的對(duì)角線AC所在直線解析式為y=-
3
3
x+1.
(1)在x軸上存在這樣的點(diǎn)M,使AMB為等腰三角形,求出所有符合要求的點(diǎn)M的坐標(biāo);
(2)動(dòng)點(diǎn)P從點(diǎn)C開始在線段CO上以每秒
3
個(gè)單位長(zhǎng)度的速度向點(diǎn)O移動(dòng),同時(shí),動(dòng)點(diǎn)Q從點(diǎn)O開始在線段OA上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng).設(shè)P、Q移動(dòng)的時(shí)間為t秒.
①是否存在這樣的時(shí)刻2,使△OPQ與△BCP相似,并說明理由;
②設(shè)△BPQ的面積為S,求S與t間的函數(shù)關(guān)系式,并求出t為何值時(shí),S有最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案