解:(1)∵A點坐標(biāo)為(2,2),B點坐標(biāo)為(2,0),
∴OB=AB=2,且AB⊥OB,
∴△AOB是等腰直角三角形,
∴∠AOB=∠BAO=45°;
(2)由(1)知,△AOB是等腰直角三角形,且OB=AB=2,∠OBA=90°.
∵△PAB和△AOB全等(此題只要求兩三角形全等即可,不要求點的位置對應(yīng)),
∴△PAB也是等腰直角三角形.
①當(dāng)點P在x軸上時,∠PBA=90°,如圖1所示.此時△OAB≌△PAB,則BO=BP=2,所以P(4,0);
②當(dāng)點P在y軸上時,∠PAB=90°,如圖2所示.此時△OAB≌△PBA,則AP=AB=2,所以P(0,2);
綜上所述,滿足條件的點P的坐標(biāo)是:P(4,0),P(0,2);
(3)∵△QBO≌ABO,
∴QB=AB=2,∠OBQ=∠OBA=90°,
∴Q的橫坐標(biāo)是2.如圖3所示.
∵點Q在直線y=x-4上,
∴當(dāng)x=2時,y=2-4=-2,
∴Q(2,-2)
分析:(1)利用點A、B的坐標(biāo)推知△AOB是等腰直角三角形;
(2)由全等三角形的性質(zhì)知,△PAB也是等腰直角三角形.因為點P在坐標(biāo)軸上,AB⊥x軸,所以只有∠PAB=90°和∠PBA=90°這兩種情況;
(3)由全等三角形的對應(yīng)邊相等、對應(yīng)角相等的性質(zhì)和一次函數(shù)圖象上點的坐標(biāo)特征來求點Q的坐標(biāo).
點評:本題考查了全等三角形的判定與性質(zhì),坐標(biāo)與圖形的性質(zhì)以及一次函數(shù)圖象上點的坐標(biāo)特征等知識點.解答(2)題時,注意分類討論,以防漏解.