下列語句中,屬于命題的是( )
(A) 作線段的垂直平分線 (B) 等角的補(bǔ)角相等嗎
(C) 平行四邊形是軸對(duì)稱圖形 (D) 用三條線段去拼成一個(gè)三角形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,等腰梯形ABCD中,AB∥CD,AB=, CD=,高CE=,對(duì)角線AC、BD交于點(diǎn)H.平行于線段BD的兩條直線MN、RQ同時(shí)從點(diǎn)A出發(fā),沿AC方向向點(diǎn)C勻速平移,分別交等腰梯形ABCD的邊于M、N和R、Q,分別交對(duì)角線AC于F、G,當(dāng)直線RQ到達(dá)點(diǎn)C時(shí),兩直線同時(shí)停止移動(dòng).記等腰梯形ABCD被直線MN掃過的面積為,被直線RQ掃過的面積為,若直線MN平移的速度為1單位/秒,直線RQ平移的速度為2單位/秒,設(shè)兩直線移動(dòng)的時(shí)間為x秒.
(1)填空:∠AHB=____________;AC=_____________;
(2)若,求x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
小剛和小明兩位同學(xué)玩一種游戲.游戲規(guī)則為:兩人各執(zhí)“象、虎、鼠”三張牌,同時(shí)各出一張牌定勝負(fù),其中象勝虎、虎勝鼠、鼠勝象;若兩人所出牌相同,則為平局.例如,小剛出象牌,小明出虎牌,則小剛勝;又如,兩人同時(shí)出象牌,則兩人平局.
(1)一次出牌小剛出“象”牌的概率是多少?
(2)如果用A,B,C分別表示小剛的象、虎、鼠三張牌,用A1,B1,C1分別表示小明的象、虎、鼠三張牌,那么一次出牌小剛勝小明的概率是多少?用列表法或畫樹狀圖法加以說明;
(3)你認(rèn)為這個(gè)游戲?qū)π偤托∶鞴絾?為什么?/p>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
觀察下面一列數(shù):?1,2,?3,4,?5,6,?7…,將這列數(shù)排成下列形式:記為第行第列的數(shù),如=4,那么是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某公司開發(fā)了一種新型的家電產(chǎn)品,又適逢“家電下鄉(xiāng)”的優(yōu)惠政策.現(xiàn)投資40萬元用于該產(chǎn)品的廣告促銷,已知該產(chǎn)品的本地銷售量y1(萬臺(tái))與本地的廣告費(fèi)用x(萬元)之間的函數(shù)關(guān)系滿足 .
該產(chǎn)品的外地銷售量y2(萬臺(tái))與外地廣告費(fèi)用t(萬元)之間的函數(shù)關(guān)系可用如圖所示的拋物線和線段AB來表示.其中點(diǎn)A為拋物線的頂點(diǎn).
(1)結(jié)合圖像,求出y2(萬臺(tái))與外地廣告費(fèi)用t(萬元)之間的函數(shù)關(guān)系式;
(2)求該產(chǎn)品的銷售總量y(萬臺(tái))與外地廣告費(fèi)用t(萬元)之間的函數(shù)關(guān)系式;
(3)如何安排廣告費(fèi)用才能使銷售總量最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知w關(guān)于t的函數(shù):,則下列有關(guān)此函數(shù)圖像的描述正確的是( )
(A)該函數(shù)圖像與坐標(biāo)軸有兩個(gè)交點(diǎn) (B)該函數(shù)圖像經(jīng)過第一象限
(C)該函數(shù)圖像關(guān)于原點(diǎn)中心對(duì)稱 (D)該函數(shù)圖像在第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC中,∠B=∠C=30°,AD⊥BC,O是AD上一點(diǎn)(1)若⊙O是△ABC的內(nèi)切圓,且半徑為,則AB=_______;(2)若以AD為直徑的⊙O恰與BC邊相切,⊙O交AB于E,交AC于F. 過O點(diǎn)的直線MN分別交線段BE和CF于M,N,且AM:MB=3:5,則AN:NC的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在⊿ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB于E,交AC于F,過點(diǎn)O作OD⊥AC于D。下列四個(gè)結(jié)論:
①以E為圓心、BE為半徑的圓與以F為圓心、CF為半徑的圓外切;
②∠BOC=90°+∠A;③EF不能成為⊿ABC的中位線;④設(shè)OD=m,AE+AF=n,則S⊿AEF =mn.
其中正確的結(jié)論是:( )
A.①②③ B.①②④ C.②③④ D.①③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com