已知數(shù)軸上兩點(diǎn)A、B到原點(diǎn)的距離是數(shù)學(xué)公式和2,則AB=________.


分析:由于到原點(diǎn)的距離實(shí)際表示這個(gè)數(shù)的絕對(duì)值,由此得到數(shù)軸上兩點(diǎn)間距離的公式便可解答.
解答:∵到原點(diǎn)的距離實(shí)際表示這個(gè)數(shù)的絕對(duì)值,
而 A、B到原點(diǎn)的距離是和2,
∴點(diǎn)A表示的數(shù)為或-,點(diǎn)B表示的數(shù)為2或-2.
那么AB=2-,或AB=2-(-)=2+,或AB=-(-2)=2+,AB=--(-2)=2-
故答案為:
點(diǎn)評(píng):此題主要考查了是與數(shù)軸之間的對(duì)應(yīng)關(guān)系,其中絕對(duì)值是正數(shù)的數(shù)有2個(gè).解題關(guān)鍵是求數(shù)軸上兩點(diǎn)間的距離應(yīng)讓較大的數(shù)減去較小的數(shù)即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、已知數(shù)軸上兩點(diǎn)A,B它們所表示的數(shù)分別是+3和-5,則線段AB=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知數(shù)軸上兩點(diǎn)A、B到原點(diǎn)的距離是
2
和2,則AB=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別是 6,-8,M、N、P為數(shù)軸上三個(gè)動(dòng)點(diǎn),點(diǎn)M從A點(diǎn)出發(fā)速度為每秒2個(gè)單位,點(diǎn)N從點(diǎn)B出發(fā)速度為M點(diǎn)的3倍,點(diǎn)P從原點(diǎn)出發(fā)速度為每秒1個(gè)單位.
(1)若點(diǎn)M向右運(yùn)動(dòng),同時(shí)點(diǎn)N向左運(yùn)動(dòng),求多長(zhǎng)時(shí)間點(diǎn)M與點(diǎn)N相距54個(gè)單位?
(2)若點(diǎn)M、N、P同時(shí)都向右運(yùn)動(dòng),求多長(zhǎng)時(shí)間點(diǎn)P到點(diǎn)M,N的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別為-1.3,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x.
(1)若點(diǎn)P到點(diǎn)A,點(diǎn)B的距離相等,求點(diǎn)P對(duì)應(yīng)的數(shù);
(2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和為5?若存在,請(qǐng)求出x的值;若不存在,說明理由:
(3)當(dāng)點(diǎn)P以每秒5個(gè)單位長(zhǎng)度的速度從O點(diǎn)向右運(yùn)動(dòng)時(shí),點(diǎn)A以每秒5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),點(diǎn)B以每秒4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),問它們同時(shí)出發(fā),幾秒后P到點(diǎn)A、點(diǎn)B的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別為-1、3,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x.
(1)若點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等,求點(diǎn)P對(duì)應(yīng)的數(shù);
(2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和為6?若存在,請(qǐng)求出x的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案