【題目】在平面直角坐標系中,設兩數(shù) (, 是常數(shù),).若函數(shù)的圖象過,且.
(1)求的值:
(2)將函數(shù)的圖象向上平移個單位,平移后的函數(shù)圖象與函數(shù)的圖象交于直線上的同一點,求的值;
(3)已知點 (為常數(shù))在函數(shù)的圖象上,關于軸的對稱點為,函數(shù)的圖象經(jīng)過點,當時,求的取值范圍.
【答案】(1);(2);(3)或
【解析】
(1)根據(jù)題意列方程組即可得到結(jié)論;
(2)根據(jù)平移的性質(zhì)得到平移后的函數(shù)的解析式為y=-x+2+h,得到交點的坐標為(1,4),把(1,4)代入y=-x+2+h即可得到結(jié)論;
(3)由點M(a,b)(a,b為常數(shù))在函數(shù)y1=-x+m的圖象上,得到M(a,2-a),求得點M(a,b)關于y軸的對稱點N(-a,2-a),于是得到y3=x+2,解不等式即可得到結(jié)論.
解:(1)的圖象過,
∴
又,
;
(2)將的圖象向上平移后為,
與函數(shù)的圖象交直線于點(1,4),
將(1,4)代入,得:
,
解得:.
(3)∵點M(a,b)(a,b為常數(shù))在函數(shù)y1=-x+m的圖象上,
∴M(a,2-a),
∴點M(a,b)關于y軸的對稱點N(-a,2-a),
∵函數(shù)y3=kx+m(k≠0)的圖象經(jīng)過點N,
,
由,代入得:
,
當x>0時,解得:x>2,
當x<0時,解得:x<0,
綜上所述,x的取值范圍為:x>2或x<0.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形 中, ,點 為線段 上的動點,將 沿 折疊,使點 落在矩形內(nèi)點 處.下列結(jié)論正確的是________. (寫出所有正確結(jié)論的序號)
①當 為線段 中點時, ;②當 為線段 中點時, ;
③當 三點共線時, ;④當 三點共線時, .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點,以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點C,則圖中陰影部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E為AB中點,EF∥DC交BC于點F,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+的圖象與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,過A點作x軸的垂線,垂足為M,△AOM面積為1.
(1)求反比例函數(shù)的解析式;
(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,矩形OABC的頂點A(﹣6,0),C(0,2).將矩形OABC繞點O順時針方向旋轉(zhuǎn),使點A恰好落在OB上的點A1處,則點B的對應點B1的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB′C′(點B的對應點是點B′,點C的對應點是點C′),連接CC′,若∠CC′B′=33°,則∠B的大小是( )
A. 33° B. 45° C. 57° D. 78°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩個可以自由轉(zhuǎn)動的均勻轉(zhuǎn)盤,都被分成了3等份,并在每份內(nèi)均標有數(shù)字,如圖所示.規(guī)則如下:
①分別轉(zhuǎn)動轉(zhuǎn)盤;
②兩個轉(zhuǎn)盤停止后,將兩個指針所指份內(nèi)的數(shù)字相乘(若指針停止在等份線上,那么重轉(zhuǎn)一次,直到指針指向某一份為止).
【1】用列表法或樹狀圖分別求出數(shù)字之積為3的倍數(shù)和數(shù)字之積為5的倍數(shù)的概率;
【2】小明和小亮想用這兩個轉(zhuǎn)盤做游戲,他們規(guī)定:數(shù)字之積為3的倍數(shù)時,小明得2分;數(shù)字之積為5的倍數(shù)時,小亮得3分.這個游戲?qū)﹄p方公平嗎?請說明理由;認為不公平的,試修改得分規(guī)定,使游戲?qū)﹄p方公平.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com